liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Personalized Physical Activity Monitoring Using Wearable Sensors
German Research Center for Artificial Intelligence (DFKI), Kaiserslautern, Germany.
German Research Center for Artificial Intelligence (DFKI), Kaiserslautern, Germany.
ACTLab, University of Passau, 94032, Passau, Germany.
German Research Center for Artificial Intelligence (DFKI), Kaiserslautern, Germany.
Vise andre og tillknytning
2015 (engelsk)Inngår i: Smart Health: Open Problems and Future Challenges / [ed] Andreas Holzinger, Carsten Röcker, Martina Ziefle, Springer International Publishing , 2015, s. 99-124Kapittel i bok, del av antologi (Fagfellevurdert)
Abstract [en]

It is a well-known fact that exercising helps people improve their overall well-being; both physiological and psychological health. Regular moderate physical activity improves the risk of disease progression, improves the chances for successful rehabilitation, and lowers the levels of stress hormones. Physical fitness can be categorized in cardiovascular fitness, and muscular strength and endurance. A proper balance between aerobic activities and strength exercises are important to maximize the positive effects. This balance is not always easily obtained, so assistance tools are important. Hence, ambient assisted living (AAL) systems that support and motivate balanced training are desirable. This chapter presents methods to provide this, focusing on the methodologies and concepts implemented by the authors in the physical activity monitoring for aging people (PAMAP) platform. The chapter sets the stage for an architecture to provide personalized activity monitoring using a network of wearable sensors, mainly inertial measurement units (IMU). The main focus is then to describe how to do this in a personalizable way: (1) monitoring to provide an estimate of aerobic activities performed, for which a boosting based method to determine activity type, intensity, frequency, and duration is given; (2) supervise and coach strength activities. Here, methodologies are described for obtaining the parameters needed to provide real-time useful feedback to the user about how to exercise safely using the right technique.

sted, utgiver, år, opplag, sider
Springer International Publishing , 2015. s. 99-124
Serie
Lecture Notes in Computer Science, ISSN 0302-9743, E-ISSN 1611-3349 ; 8700
Emneord [en]
Physical activity monitoring; ADL; Strength exercises; Personalization; Wearable sensors; Inertial sensors; HCI; Ambient assisted living
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-115399DOI: 10.1007/978-3-319-16226-3_5ISBN: 978-3-319-16225-6 (tryckt)ISBN: 978-3-319-16226-3 (tryckt)OAI: oai:DiVA.org:liu-115399DiVA, id: diva2:795292
Tilgjengelig fra: 2015-03-16 Laget: 2015-03-16 Sist oppdatert: 2018-02-19

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fullteksthttp://link.springer.com/chapter/10.1007/978-3-319-16226-3_5

Personposter BETA

Hendeby, Gustaf

Søk i DiVA

Av forfatter/redaktør
Hendeby, Gustaf
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 565 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf