liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Low-Level Active Vision Framework for Collaborative Unmanned Aircraft Systems
Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.ORCID-id: 0000-0002-6096-3648
Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.ORCID-id: 0000-0002-3450-988X
Vise andre og tillknytning
2015 (engelsk)Inngår i: COMPUTER VISION - ECCV 2014 WORKSHOPS, PT I / [ed] Lourdes Agapito, Michael M. Bronstein and Carsten Rother, Springer Publishing Company, 2015, Vol. 8925, s. 223-237Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Micro unmanned aerial vehicles are becoming increasingly interesting for aiding and collaborating with human agents in myriads of applications, but in particular they are useful for monitoring inaccessible or dangerous areas. In order to interact with and monitor humans, these systems need robust and real-time computer vision subsystems that allow to detect and follow persons.

In this work, we propose a low-level active vision framework to accomplish these challenging tasks. Based on the LinkQuad platform, we present a system study that implements the detection and tracking of people under fully autonomous flight conditions, keeping the vehicle within a certain distance of a person. The framework integrates state-of-the-art methods from visual detection and tracking, Bayesian filtering, and AI-based control. The results from our experiments clearly suggest that the proposed framework performs real-time detection and tracking of persons in complex scenarios

sted, utgiver, år, opplag, sider
Springer Publishing Company, 2015. Vol. 8925, s. 223-237
Serie
Lecture Notes in Computer Science, ISSN 0302-9743, E-ISSN 1611-3349 ; 8925
Emneord [en]
Visual tracking; Visual surveillance; Micro UAV; Active vision
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-115847DOI: 10.1007/978-3-319-16178-5_15ISI: 000362493800015ISBN: 978-3-319-16177-8 (tryckt)ISBN: 978-3-319-16178-5 (tryckt)OAI: oai:DiVA.org:liu-115847DiVA, id: diva2:796839
Konferanse
13th European Conference on Computer Vision (ECCV) Switzerland, September 6-7 and 12
Tilgjengelig fra: 2015-03-20 Laget: 2015-03-20 Sist oppdatert: 2018-02-07bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Danelljan, MartinKhan, Fahad ShahbazFelsberg, MichaelGranström, KarlHeintz, FredrikRudol, PiotrWzorek, MariuszKvarnström, JonasDoherty, Patrick

Søk i DiVA

Av forfatter/redaktør
Danelljan, MartinKhan, Fahad ShahbazFelsberg, MichaelGranström, KarlHeintz, FredrikRudol, PiotrWzorek, MariuszKvarnström, JonasDoherty, Patrick
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 1193 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf