liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A laser Doppler system for monitoring of cerebral microcirculation: implementation and evaluation during neurosurgery
Linköpings universitet, Institutionen för medicinsk teknik, Biomedicinsk instrumentteknik. Linköpings universitet, Tekniska fakulteten. (MINT)
Östergötlands Läns Landsting, Sinnescentrum, Neurokirurgiska kliniken US.
Östergötlands Läns Landsting, Sinnescentrum, Neurokirurgiska kliniken US. Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten.
Linköpings universitet, Institutionen för medicinsk teknik, Biomedicinsk instrumentteknik. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. (MINT)ORCID-id: 0000-0002-0012-7867
2016 (engelsk)Inngår i: Medical and Biological Engineering and Computing, ISSN 0140-0118, E-ISSN 1741-0444, ISSN 0140-0118, Vol. 54, nr 1, s. 123-131Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The aim of this study was to adapt and evaluate laser Doppler perfusion monitoring (LDPM) together with custom designed brain probes and software for continuous recording of cerebral microcirculation in patients undergoing neurosurgery. The LDPM system was used to record perfusion and backscattered light (TLI). These parameters were displayed together with the extracted heart rate (HR), pulsatility index (PI) and signal trends from adjustable time intervals. Technical evaluation was done on skin during thermal provocation. Clinical measurements were performed on ten patients undergoing brain tumour surgery. Data from 76 tissue sites were captured with a length varying between 10 s to 15 min. Statistical comparisons were done using Mann-Whitney tests. Grey and tumour tissue could be separated from white matter using the TLI-signal (p < 0.05). The perfusion was significantly higher in grey and tumour tissue compared to white matter (p < 0.005). LDPM was successfully used as an intraoperative tool for monitoring local blood flow and additional parameters linked to cerebral microcirculation (perfusion, TLI, heart rate and PI) during tumour resection. The systems stability opens up for studies in the postoperative care of patients with e.g. traumatic brain injury or subarachnoid haemorrhage.

sted, utgiver, år, opplag, sider
Springer Berlin/Heidelberg, 2016. Vol. 54, nr 1, s. 123-131
Emneord [en]
Microcirculation, Brain tumour Laser Doppler perfusion monitoring (LDPM), Pulsatility index (PI), Neurosurgery
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-120632DOI: 10.1007/s11517-015-1332-5ISI: 000371437900010PubMedID: 26105147OAI: oai:DiVA.org:liu-120632DiVA, id: diva2:847367
Forskningsfinansiär
Swedish Research Council, 6212-010-4216Tilgjengelig fra: 2015-08-20 Laget: 2015-08-20 Sist oppdatert: 2017-12-04bibliografisk kontrollert
Inngår i avhandling
1. Optical Monitoring of Cerebral Microcirculation
Åpne denne publikasjonen i ny fane eller vindu >>Optical Monitoring of Cerebral Microcirculation
2017 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The cerebral microcirculation consists of a complex network of small blood vessels that support nerve cells with oxygen and nutrition. The blood flow and oxygen delivery in the microcirculatory blood vessels are regulated through mechanisms which may be influenced or impaired by disease or brain damage resulting from conditions such as brain tumors, traumatic brain injury or subarachnoid hemorrhage (SAH). Monitoring of parameters relating to the microvascular circulation is therefore needed in the clinical setting. Optical techniques such as diffuse reflectance spectroscopy (DRS) and laser Doppler flowmetry (LDF) are capable of estimating the oxygen saturation (SO2) and tracking the microvascular blood flow (perfusion) using a fiber optic probe. This thesis presents the work carried out to adapt DRS and LDF for monitoring cerebral microcirculation in the human brain.

A method for real-time estimation of SO2 in brain tissue was developed based on the P3 approximation of diffuse light transport and quadratic polynomial fit to the measured DRS signal. A custom-made fiberoptic probe was constructed for measurements during tumor surgery and in neurointensive care. Software modules with specific user interface for LDF and DRS were programmed to process, record and present parameters such as perfusion, total backscattered light, heart rate, pulsatility index, blood fraction and SO2 from acquired signals.

The systems were evaluated on skin, and experimentally by using optical phantoms with properties mimicking brain tissue. The oxygen pressure (pO2) in the phantoms was regulated to track spectroscopic changes coupled with the level of SO2. Clinical evaluation was performed during intraoperative measurements during tumor surgery (n = 10) and stereotactic deep brain stimulation implantations (n = 20). The LDF and DRS systems were also successfully assessed in the neurointensive care unit for a patient treated for SAH. The cerebral autoregulation was studied by relating the parameters from the optical systems to signals from the standard monitoring equipment in neurointensive care.

In summary, the presented work takes DRS and LDF one step further toward clinical use for optical monitoring of cerebral microcirculation.

sted, utgiver, år, opplag, sider
Linköping: Linköping University Electronic Press, 2017. s. 68
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1807
Emneord
optical monitoring, cerebral microcirculation, diffuse reflectance spectroswcopy (DRS), laser Doppler flowmetry (LDF)
HSV kategori
Identifikatorer
urn:nbn:se:liu:diva-133781 (URN)10.3384/diss.diva-133781 (DOI)978-91-7685-634-5 (ISBN)
Disputas
2017-02-10, Hugo Theorell, Campus US, Linköping, Norra entrén, Plan 9, Linköping, 09:00 (svensk)
Opponent
Veileder
Forskningsfinansiär
Swedish Research Council, 621-2010-4216Swedish Research Council, 621-2013-6078Swedish Childhood Cancer Foundation, MT2012-0043
Tilgjengelig fra: 2017-01-17 Laget: 2017-01-09 Sist oppdatert: 2019-10-11bibliografisk kontrollert

Open Access i DiVA

fulltext(1045 kB)184 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1045 kBChecksum SHA-512
2ff89f4038829c5d5a313047ad1850958b1e067a5bf3fa3abeda44a089a93e362d3a729531586326f2cb89c2b294835d4616fda781fc8debffca5437ad2861f4
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Rejmstad, PeterÅneman, OscarWårdell, Karin

Søk i DiVA

Av forfatter/redaktør
Rejmstad, PeterÅneman, OscarWårdell, Karin
Av organisasjonen
I samme tidsskrift
Medical and Biological Engineering and Computing

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 184 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 406 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf