liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Efficient Donor Impurities in ZnO Nanorods by Polyethylene Glycol for Enhanced Optical and Glutamate Sensing Properties
Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
Vise andre og tillknytning
2016 (engelsk)Inngår i: Sensors, ISSN 1424-8220, E-ISSN 1424-8220, Vol. 16, nr 2Artikkel i tidsskrift (Fagfellevurdert) Published
Resurstyp
Text
Abstract [en]

In this paper, we show that the possibility of using polyethylene glycol (EG) as a hydrogen source and it is used to assist the hydrothermal synthesis of ZnO nanorods (ZNRs). EG doping in ZNRs has been found to significantly improve their optical and chemical sensing characteristics toward glutamate. The EG was found to have no role on the structural properties of the ZNRs. However, the x-ray photoelectron spectroscopy (XPS) suggests that the EG could induce donor impurities effect in ZnO. Photoluminescence (PL) and UV-Vis. spectra demonstrated this doping effect. Mott-Schottky analysis at the ZNRs/electrolyte interface was used to investigate the charge density for the doped ZNRs and showed comparable dependence on the used amount of EG. Moreover, the doped ZNRs were used in potentiometric measurements for glutamate for a range from 10(-6) M to 10(-3) M and the potential response of the sensor electrode was linear with a slope of 91.15 mV/decade. The wide range and high sensitivity of the modified ZNRs based glutamate biosensor is attributed to the doping effect on the ZNRs that is dictated by the EG along with the high surface area-to-volume ratio. The findings in the present study suggest new avenues to control the growth of n-ZnO nanostructures and enhance the performance of their sensing devices.

sted, utgiver, år, opplag, sider
MDPI AG , 2016. Vol. 16, nr 2
Emneord [en]
potentiometric sensor; ZnO nanorods; glutamate; doping
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-126849DOI: 10.3390/s16020222ISI: 000371787800096PubMedID: 26861342OAI: oai:DiVA.org:liu-126849DiVA, id: diva2:917168
Merknad

Funding Agencies|University of Kordofan, El-Obeid, Kordofan Sudan [700]

Tilgjengelig fra: 2016-04-05 Laget: 2016-04-05 Sist oppdatert: 2017-11-30
Inngår i avhandling
1. Chemically Modified Metal Oxide Nanostructures Electrodes for Sensing and Energy Conversion
Åpne denne publikasjonen i ny fane eller vindu >>Chemically Modified Metal Oxide Nanostructures Electrodes for Sensing and Energy Conversion
2017 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The goal of this thesis is the development of scalable, low cost synthesis of metal oxide nanostructures based electrodes and to correlate the chemical modifications with their energy conversion performance. Methods in energy conversion in this thesis have focused on two aspects; a potentiometric chemical sensor was used to determine the analytical concentration of some components of the analyte solution such as dopamine, glucose and glutamate molecules. The second aspect is to fabricate a photo-electrochemical (PEC) cell. The biocompatibility, excellent electro-catalytic activities and fast electron transfer kinetics accompanied with a high surface area to volume ratio; are properties of some metal oxide nanostructures that of a potential for their use in energy conversion. Furthermore, metal oxide nanostructures based electrode can effectively be improved by the physical or a chemical modification of electrode surface. Among these metal oxide nanostructures are cobalt oxide (Co3O4), zinc oxide (ZnO), and bismuth-zincvanadate (BiZn2VO6) have all been studied in this thesis. Metal oxide nanostructures based electrodes are fabricated on gold-coated glass substrate by low temperature (< 100 0C) wet chemicalapproach. X-ray diffraction, x-ray photoelectron spectroscopy and scanning electron microscopy were used to characterize the electrodes while ultraviolet-visible absorption and photoluminescence were used to investigate the optical properties of the nanostructures. The resultant modified electrodes were tested for their performance as chemical sensors and for their efficiency in PEC activities. Efficient chemically modified electrodes were demonstrated through doping with organic additives like anionic, nonionic or cationic surfactants. The organic additives are showing a crucial role in the growth process of metal oxide nanocrystals and hence can beused to control the morphology. These organic additives act also as impurities that would significantly change the conductivity of the electrodes. However, no organic compounds dependence was observed to modify the crystallographic structure. The findings in this thesis indicate the importance of the use of controlled nanostructures morphology for developing efficient functional materials.

sted, utgiver, år, opplag, sider
Linköping: Linköping University Electronic Press, 2017. s. 73
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1827
Emneord
Metal oxide nanostructures, mixed metal oxide nano-compound, low temperature wet-chemical growth, chemically modified electrode, doping, surfactant, potentiometric sensor, chemical sensor and photo-electrochemical activity
HSV kategori
Identifikatorer
urn:nbn:se:liu:diva-134275 (URN)10.3384/diss.diva-134275 (DOI)9789176855904 (ISBN)
Disputas
2017-03-03, Sal K3, Kåkenhus, Campus Norrköping, Norrköping, 10:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2017-02-02 Laget: 2017-02-02 Sist oppdatert: 2019-10-11bibliografisk kontrollert

Open Access i DiVA

fulltext(1258 kB)139 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1258 kBChecksum SHA-512
796e7a4a5860910a8dd7b5c9ca6021035c8709c29c202be11fe7144e1be72f9853ed2be4917888c4b70d0de04b8009da519287558decd5ecf8817056dfa1ed8f
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Elhag, SamiKhun, KimleangKhranovskyy, VolodymyrLiu, XianjieWillander, MagnusNour, Omer

Søk i DiVA

Av forfatter/redaktør
Elhag, SamiKhun, KimleangKhranovskyy, VolodymyrLiu, XianjieWillander, MagnusNour, Omer
Av organisasjonen
I samme tidsskrift
Sensors

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 139 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 402 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf