liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
MRI-based age prediction using hidden Markov models
MRI-based age prediction using hidden Markov models.
Bioinformatics Research Group, School of Engineering and Information Technology, The University of New South Wales, Canberra ACT 2600, Australia.ORCID-id: 0000-0002-4255-5130
2011 (engelsk)Inngår i: Journal of Neuroscience Methods, ISSN 0165-0270, E-ISSN 1872-678X, Vol. 199, nr 1, s. 140-145Artikkel i tidsskrift (Fagfellevurdert) Published
Resurstyp
Text
Abstract [en]

Cortical thinning and intracortical gray matter volume losses are widely observed in normal ageing, while the decreasing rate of the volume loss in subjects withneurodegenerative disorders such as Alzheimer's disease is reported to be faster than the average speed. Therefore, neurodegenerative disease is considered as accelerated ageing. Accurate detection of accelerated ageing based on the magnetic resonance imaging (MRI) of the brain is a relatively new direction of research in computational neuroscience as it has the potential to offer positive clinical outcome through early intervention. In order to capture the faster structural alterations in the brain with ageing, we propose in this paper a computational approach for modelling the MRI-based structure of the brain using the framework of hidden Markov models, which can be utilized for age prediction. Experiments were carried out on healthy subjects to validate its accuracy and its robustness. The results have shown its ability of predicting the brain age with an average normalized age-gap error of two to three years, which is superior to several recently developed methods for brain age prediction.

sted, utgiver, år, opplag, sider
2011. Vol. 199, nr 1, s. 140-145
Emneord [en]
MRI;Age prediction;Wavelet transforms;Vector quantization;Kullback–Leibler divergence
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-127869DOI: 10.1016/j.jneumeth.2011.04.022OAI: oai:DiVA.org:liu-127869DiVA, id: diva2:928876
Tilgjengelig fra: 2016-05-17 Laget: 2016-05-13 Sist oppdatert: 2017-11-30

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Pham, Tuan D

Søk i DiVA

Av forfatter/redaktør
Pham, Tuan D
I samme tidsskrift
Journal of Neuroscience Methods

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 89 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf