liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Fast vascular skeleton extraction algorithm
Uppsala University, Sweden.
Uppsala University, Sweden.
Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. KTH Royal Institute Technology, Sweden.ORCID-id: 0000-0002-0442-3524
Uppsala University, Sweden.
Vise andre og tillknytning
2016 (engelsk)Inngår i: Pattern Recognition Letters, ISSN 0167-8655, E-ISSN 1872-7344, Vol. 76, s. 67-75Artikkel i tidsskrift (Fagfellevurdert) Published
Resurstyp
Text
Abstract [en]

Vascular diseases are a common cause of death, particularly in developed countries. Computerized image analysis tools play a potentially important role in diagnosing and quantifying vascular pathologies. Given the size and complexity of modern angiographic data acquisition, fast, automatic and accurate vascular segmentation is a challenging task. In this paper we introduce a fully automatic high-speed vascular skeleton extraction algorithm that is intended as a first step in a complete vascular tree segmentation program. The method takes a 3D unprocessed Computed Tomography Angiography (CTA) scan as input and produces a graph in which the nodes are centrally located artery voxels and the edges represent connections between them. The algorithm works in two passes where the first pass is designed to extract the skeleton of large arteries and the second pass focuses on smaller vascular structures. Each pass consists of three main steps. The first step sets proper parameters automatically using Gaussian curve fitting. In the second step different filters are applied to detect voxels nodes - that are part of arteries. In the last step the nodes are connected in order to obtain a continuous centerline tree for the entire vasculature. Structures found, that do not belong to the arteries, are removed in a final anatomy-based analysis. The proposed method is computationally efficient with an average execution time of 29 s and has been tested on a set of CTA scans of the lower limbs achieving an average overlap rate of 97% and an average detection rate of 71%. (C) 2015 Elsevier B.V. All rights reserved.

sted, utgiver, år, opplag, sider
ELSEVIER SCIENCE BV , 2016. Vol. 76, s. 67-75
Emneord [en]
Skeleton extraction; Centerline tree; Vascular tree; Blood vessels; CT angiography
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-128720DOI: 10.1016/j.patrec.2015.06.024ISI: 000375135600009OAI: oai:DiVA.org:liu-128720DiVA, id: diva2:933907
Merknad

Funding Agencies|Swedish Council for Research [VR-NT 2014-6153]

Tilgjengelig fra: 2016-06-07 Laget: 2016-05-30 Sist oppdatert: 2017-11-30

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Person

Wang, ChunliangSmedby, Örjan

Søk i DiVA

Av forfatter/redaktør
Wang, ChunliangSmedby, Örjan
Av organisasjonen
I samme tidsskrift
Pattern Recognition Letters

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 144 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf