liu.seSök publikationer i DiVA
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Classification of Clothing Attributes Across Domains
Linköpings universitet, Institutionen för systemteknik, Datorseende.
2020 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

Classifying clothing attributes in surveillance images can be useful in the forensic field, making it easier to, for example, find suspects based on eyewitness accounts. Deep Neural Networks are often used successfully in image classification, but require a large amount of annotated data. Since labeling data can be time consuming or difficult, and it is easier to get hold of labeled fashion images, this thesis investigates how the domain shift from a fashion domain to a surveillance domain, with little or no annotated data, affects a classifier.

In the experiments, two deep networks of different depth are used as a base and trained on only fashion images as well as both labeled and unlabeled surveillance images, with and without domain adaptation regularizers. The surveillance dataset is new and consists of images that were collected from different surveillance cameras and annotated during this thesis work.

The results show that there is a degradation in performance for a classifier trained on the fashion domain when tested on the surveillance domain, compared to when tested on the fashion domain. The results also show that if no labeled data in the surveillance domain is used for these experiments, it is more effective to use the deeper network and train it on only fashion data, rather than to use the more complicated unsupervised domain adaptation method.

Ort, förlag, år, upplaga, sidor
2020. , s. 47
Nyckelord [en]
domain adaptation, image classification, cnn, fashion, surveillance
Nationell ämneskategori
Datorseende och robotik (autonoma system)
Identifikatorer
URN: urn:nbn:se:liu:diva-163574ISRN: LiTH-ISY-EX--20/5276--SEOAI: oai:DiVA.org:liu-163574DiVA, id: diva2:1392992
Externt samarbete
Nationellt Forensiskt Centrum
Ämne / kurs
Examensarbete i Datorseende
Presentation
2020-02-10, Systemet, B-building, Campus Valla, Linköping, 13:15 (Svenska)
Handledare
Examinatorer
Tillgänglig från: 2020-02-14 Skapad: 2020-02-14 Senast uppdaterad: 2020-02-17Bibliografiskt granskad

Open Access i DiVA

fulltext(3895 kB)46 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 3895 kBChecksumma SHA-512
025b6894c9ca1253c63d92ef28a6e264ac9c39341b4c76fc17ba97d6e5432dc580f0ab7de39602eeff92b67624c903634decd1ea9d70edba88a818c1d46de0b7
Typ fulltextMimetyp application/pdf

Av organisationen
Datorseende
Datorseende och robotik (autonoma system)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 46 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 117 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf