liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Large-Area, Semitransparent, and Flexible All-Polymer Photodetectors
Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Ocean Univ China, Peoples R China.
Xi An Jiao Tong Univ, Peoples R China.
Xi An Jiao Tong Univ, Peoples R China.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
Visa övriga samt affilieringar
2018 (Engelska)Ingår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 28, nr 48, artikel-id 1805570Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Photodetectors, converting optical signals from specific wavelengths to electrical signals, have many applications on photoimaging, optical communication, and environmental monitoring. Solution-processed organic photodetectors (OPDs) based on organic materials emerge promise especially for wearable electronics and smart buildings. In this work, new all-polymer photodetectors (all-PPDs) are developed based on bulk-heterojunction active layers which incorporate a donor polymer and an acceptor polymer. The inverted all-PPDs exhibit outstanding external quantum efficiency over 70%, low dark current density (J(d)) of 1.1 x 10(-8) A cm(-2), and high detectivity (D*) over 3.0 x 10(12) Jones with planar response over the entire visible range. It is one of the best-performing all-PPDs reported so far and is also comparable with many organic and inorganic photodetectors. By using lamination technique, large-area, semitransparent, flexible, and "fully" polymeric photodetectors are successfully fabricated for the first time, with D* over 10(11) Jones for double-side light detection. The results highlight the great potential for producing high-performance all-PPDs by taking advantages of various device architecture and solution-processing techniques.

Ort, förlag, år, upplaga, sidor
WILEY-V C H VERLAG GMBH , 2018. Vol. 28, nr 48, artikel-id 1805570
Nyckelord [en]
all-polymer photodetectors; conjugated polymers; flexible electronics; semitransparent electronics
Nationell ämneskategori
Materialkemi
Identifikatorer
URN: urn:nbn:se:liu:diva-153367DOI: 10.1002/adfm.201805570ISI: 000451118800014OAI: oai:DiVA.org:liu-153367DiVA, id: diva2:1271832
Anmärkning

Funding Agencies|Knut and Alice Wallenberg foundation through a Wallenberg Scholar grant; Ocean University of China; Ministry of Science and Technology [2016YFA0200700]; National Natural Science Foundation of China [21704082, 21875182, 21534003, 51320105014]; China Postdoctoral Science Foundation [2017M623162]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; China Scholarship Council (CSC)

Tillgänglig från: 2018-12-18 Skapad: 2018-12-18 Senast uppdaterad: 2019-01-04
Ingår i avhandling
1. Polymer/polymer blends in organic photovoltaic and photodiode devices
Öppna denna publikation i ny flik eller fönster >>Polymer/polymer blends in organic photovoltaic and photodiode devices
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Organic photovoltaics devices (OPV) have attracted attentions of scientist for their potential as inexpensive, lightweight, flexible and suitable for roll-to-roll production. In recent years, considerable attention has been focused on new acceptor materials, either polymeric or small molecules, to replace the once dominating fullerene derivatives. The emergence of numerous new non-fullerene materials has driven power conversion efficiency (PCE) up to 17%, attracting more and more interests of commercialization.

Polymer acceptors with more morphology stability, more absorption and more desired energy levels has been intensively studied and show great potential for large area and low-cost production in the future. OPV at this moment is not yet competitive with inorganic solar cells in PCE but is more attractive in flexibility, low weight and semitransparency. In this thesis, some basic knowledges of OPV is introduced in the first few chapters, while the next chapters are focusing on polymer-polymer blends and investigating novel structures and techniques for large scale production of solar cells and photodetectors aiming at maximizing these advantages to compete with inorganic counterpart.

Thermal annealing effects on polymer-polymer solar cells based is studied. Annealed devices show doubled power conversion efficiency compared to non-annealed devices. Based on the morphology—mobility examination, we conclude that the better charge transport is achieved by higher order and better interconnected networks of the bulk heterojunction in the annealed active layers. The annealing improves charge transport and extends the conjugation length of the polymers, which do help charge generation and meanwhile reduce recombination. The blend of an amorphous polymer and a semi-crystalline polymer can thus be modified by thermal annealing to double the power conversion efficiency.

A novel concept of all-polymer organic photovoltaics device is demonstrated in this thesis where all the layers are made out of polymers. We use PEDOT:PSS as semitransparent anode and polyethyleneimine modified PEDOT:PSS as semitransparent cathode, both of which are slot-die printed on polyethylene terephthalate(PET). Active layers are deposited on cathode and anode surfaces by spin coating separately. These layers are then joined through a roll-to-roll compatible lamination process. This forms a semitransparent and flexible solar cell. By laminating a thin layer acceptor polymer to a thick polymer-polymer blend, we can further improve the performance by reducing traps comparing to laminating blend to blend.

Flexible and semitransparent all-polymer photodiodes with different geometries can be fabricated through lamination. By choosing high band gap polymers and appropriate combination of two or more polymers, organic photodiode with low noise and high specific detectivity can be obtained. Comparison between bilayer and bulk heterojunction devices gives better understanding of the origin of noise and provides ways to improve the performance of photodiodes as detector.

Noise level is a critical parameter for photodetectors. The difficulties of measuring the noise of photodetectors make some researchers prefer the estimated shot noise as the dominating one and ignore the thermal noise and 1/f noise. The latter two terms are sometimes several orders higher than the former, noting the importance of experimentally measuring noise.

The use of semi-transparent photovoltaic devices causes an inevitable loss of photocurrent, as light transmitted has not been absorbed. This trivial effect also leads to a loss of photovoltage, an effect partially due to the lower photocurrent but also due to the geometry of the semitransparent photovoltaic device. We here demonstrate and evaluate this photovoltage loss in semi-transparent organic photovoltaic devices, compared with non-transparent solar cells of the same material. Semi-transparent solar cells in addition introduce photovoltage loss when formed by lamination. We document and analyze these effects for a number of polymer blends in the form of bulk heterojunctions.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2018. s. 60
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1974
Nationell ämneskategori
Polymerkemi Polymerteknologi Materialkemi
Identifikatorer
urn:nbn:se:liu:diva-153616 (URN)10.3384/diss.diva-153616 (DOI)9789176851463 (ISBN)
Disputation
2019-01-18, Planck, Fysikhouset, Campus Valla, Linköpings universitet, Linköping, 10:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2019-01-04 Skapad: 2019-01-04 Senast uppdaterad: 2019-01-04Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Sök vidare i DiVA

Av författaren/redaktören
Xu, XiaofengXia, YuxinInganäs, Olle
Av organisationen
Biomolekylär och Organisk ElektronikTekniska fakulteten
I samma tidskrift
Advanced Functional Materials
Materialkemi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 27 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf