liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Maximum Entropy Kernels for System Identification
University of Liege, Belgium; University of Cambridge, England.
Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten. Chinese University of Hong Kong, Peoples R China.ORCID-id: 0000-0001-8655-2655
Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
2017 (Engelska)Ingår i: IEEE Transactions on Automatic Control, ISSN 0018-9286, E-ISSN 1558-2523, Vol. 62, nr 3, s. 1471-1477Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Bayesian nonparametric approaches have been recently introduced in system identification scenario where the impulse response is modeled as the realization of a zero-mean Gaussian process whose covariance (kernel) has to be estimated from data. In this scheme, quality of the estimates crucially depends on the parametrization of the covariance of the Gaussian process. A family of kernels that have been shown to be particularly effective in the system identification framework is the family of Diagonal/Correlated (DC) kernels. Maximum entropy properties of a related family of kernels, the Tuned/Correlated (TC) kernels, have been recently pointed out in the literature. In this technical note, we show that maximum entropy properties indeed extend to the whole family of DC kernels. The maximum entropy interpretation can be exploited in conjunction with results on matrix completion problems in the graphical models literature to shed light on the structure of the DC kernel. In particular, we prove that the DC kernel admits a closed-form factorization, inverse, and determinant. These results can be exploited both to improve the numerical stability and to reduce the computational complexity associated with the computation of the DC estimator.

Ort, förlag, år, upplaga, sidor
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC , 2017. Vol. 62, nr 3, s. 1471-1477
Nyckelord [en]
Covariance extension; Gaussian process; kernel methods; maximum entropy; system identification
Nationell ämneskategori
Sannolikhetsteori och statistik
Identifikatorer
URN: urn:nbn:se:liu:diva-136046DOI: 10.1109/TAC.2016.2582642ISI: 000395924300038OAI: oai:DiVA.org:liu-136046DiVA, id: diva2:1084874
Anmärkning

Funding Agencies|Swedish Research Council [2014-5894]; Chinese University of Hong Kong, Shenzhen; ERC - European Research Council; Belgian Fund for Scientific Research (FNRS)

Tillgänglig från: 2017-03-27 Skapad: 2017-03-27 Senast uppdaterad: 2017-11-29

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Sök vidare i DiVA

Av författaren/redaktören
Chen, TianshiLjung, Lennart
Av organisationen
ReglerteknikTekniska fakulteten
I samma tidskrift
IEEE Transactions on Automatic Control
Sannolikhetsteori och statistik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 377 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf