liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Isolated metaphyseal injury influences unrelated bones A flow cytometric study of tibia and humerus in mice
Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för Kirurgi, Ortopedi och Onkologi. Linköpings universitet, Medicinska fakulteten.
Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för Kirurgi, Ortopedi och Onkologi. Linköpings universitet, Medicinska fakulteten.
Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för Kirurgi, Ortopedi och Onkologi. Linköpings universitet, Medicinska fakulteten.
Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Klinisk immunologi och transfusionsmedicin.
Visa övriga samt affilieringar
2017 (Engelska)Ingår i: Acta Orthopaedica, ISSN 1745-3674, E-ISSN 1745-3682, Vol. 88, nr 2, s. 223-230Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Background and purpose - Fracture healing involves different inflammatory cells, some of which are not part of the traditional bone field, such as B-cells and cytotoxic T-cells. We wanted to characterize bone healing by flow cytometry using 15 different inflammatory cell markers in a mouse model of metaphyseal injury, and incidentally discovered a previously unknown general skeletal reaction to trauma. Material and methods - A bent needle was inserted and twisted to traumatize the cancellous bone in the proximal tibia of C57/Bl6 female mice. This is known to induce vivid bone formation locally in the marrow compartment. Cells were harvested from the injured region, the uninjured contralateral tibia, and the humerus. The compositions of the immune cell populations were compared to those in untraumatized control animals. Results - Tibial metaphyseal injury led to substantial changes in the cell populations over time. Unexpectedly, similar changes were also seen in the contralateral tibia and in the humerus, despite the lack of local trauma. Most leukocyte subsets were affected by this generalized reaction. Interpretation - A relatively small degree of injury to the proximal tibia led to systemic changes in the immune cell populations in the marrow of unrelated bones, and probably in the entire skeleton. The few changes that were specific for the injury site appeared to relate to modulatory functions.

Ort, förlag, år, upplaga, sidor
TAYLOR & FRANCIS LTD , 2017. Vol. 88, nr 2, s. 223-230
Nationell ämneskategori
Ortopedi
Identifikatorer
URN: urn:nbn:se:liu:diva-137410DOI: 10.1080/17453674.2016.1274587ISI: 000399484400018PubMedID: 28128005OAI: oai:DiVA.org:liu-137410DiVA, id: diva2:1096657
Anmärkning

Funding Agencies|Swedish Research Council [VR 02031-47-5]; Linkoping University; Ostergotland County Council; European Communitys Seventh Framework Programme (FP7) [279239]

Tillgänglig från: 2017-05-18 Skapad: 2017-05-18 Senast uppdaterad: 2019-04-09
Ingår i avhandling
1. Inflammation in Cancellous and Cortical Bone Healing
Öppna denna publikation i ny flik eller fönster >>Inflammation in Cancellous and Cortical Bone Healing
2019 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Fractures in humans most commonly occur near the joints, in the metaphyseal bone area mainly consisting of cancellous bone. Despite this, mainly cortical fractures, located in the diaphyseal bone area, have been studied in experimental models of bone healing. It is known from previous studies that the diaphyseal fracture is sensitive to anti-inflammatory treatment, while metaphyseal bone healing is more resistant. The aim of this thesis is to study the inflammatory response to bone trauma in cancellous and cortical bone. A flow cytometric method was established for the purpose of examining the cellular composition of the inflammatory process in models of bone healing

In paper I the cellular composition of metaphyseal bone healing was studied with flow cytometry. The proximal tibia was traumatized and then studied at day 1, 3, 5 and 10 afterwards and compared to healthy mice. The contralateral proximal tibia was also studied at the same time points to delineate the trauma site specific inflammation. A few changes could be noted that seemed specific to the trauma site in macrophage phenotype development. However, the cellular composition was similar at the trauma site and in the contralateral proximal tibia. This notion of a general skeletal response was confirmed with analysis of the humerus at day 5.

In paper II a model of cortical bone healing apt for flow cytometry was developed and compared to cancellous bone healing. A furrow was milled along the femoral cortex and the healing bone tissue analyzed. The earliest time point that enough cells were present for flow cytometry was day 3. The cortical and cancellous model of bone healing was compared at day 3 and 5 to study how they evolve in comparison to each other. It was noted that they were similar in cellular composition at day 3, but had diverged at day 5. The cancellous model increased in neutrophilic granulocytes, whereas the cortical model increased in lymphocytes.

In paper III the cancellous and cortical model were compared under experimental intervention of indomethacin. It is known that indomethacin leads to weakened biomechanical properties in cortical bone healing, but not in cancellous bone healing. The effect on cellular composition with indomethacin was studied with flow cytometry and the extracellular protein profile in the healing bone tissue with mass spectrometry. Unexpectedly, inflammatory monocytes were increased in the cortical model at day 3 with indomethacin, but otherwise the models were similar in cell composition at day 3 and 5. In mass spectrometry there was a large increase in detected proteins at day 3 in the indomethacin exposed cortical model, but otherwise the models were similar. This points to an early and model specific effect of indomethacin. The observed lack of indomethacin-induced effects in cancellous bone healing is in line with the previously noted lack of indomethacin-induced effects on bone weakening. The apparently increased inflammatory activity in the cortical model with indomethacin exposure at day 3 might indicate the healing process to be disturbed and not able to progress from the early proinflammatory state to a more anabolic, anti-inflammatory state.

In paper IV the effect of macrophage depletion on healing of metaphyseal bone was studied. Clodronate was given for depletion at different time points prior to surgery and the pull-out force of a screw or tissue phenotyping of macrophages was performed a varying number of days after surgery. It was noted that metaphyseal bone healing was to a large extent inhibited by macrophage depletion up to two days after surgery, but not if depletion was done more than two days after surgery. Thus, macrophages seem to be most important during the first two days after trauma in cancellous bone healing. 

In summary this thesis provide insight to the natural development of bone healing. The findings emphasise that cancellous and cortical bone healing are different entities with differences in the inflammatory process leading to healing.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2019. s. 49
Serie
Linköping University Medical Dissertations, ISSN 0345-0082 ; 1668
Nationell ämneskategori
Ortopedi
Identifikatorer
urn:nbn:se:liu:diva-156251 (URN)10.3384/diss.diva-156251 (DOI)9789176851128 (ISBN)
Disputation
2019-05-09, Belladonna, Campus US, Linköping, 13:00 (Engelska)
Opponent
Handledare
Anmärkning

En felaktig länk till posten förekom i den tryckta avhandlingen. Denna är ändrad i den elektroniska versionen / There was an icorrect link to this record in the printed version of the thesis. This is corrected in the electronic version

Tillgänglig från: 2019-04-09 Skapad: 2019-04-09 Senast uppdaterad: 2019-06-10Bibliografiskt granskad

Open Access i DiVA

fulltext(3013 kB)67 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 3013 kBChecksumma SHA-512
cb65bb6761ccb872dee8e4172259d5344319c869bd13c4dd96638b114dad79d7f20f1be6283890d08a749af3d3e74c5b10bd014b27d1585556067881fb49b748
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMed

Sök vidare i DiVA

Av författaren/redaktören
Tätting, LoveSandberg, OlofBernhardsson, MagnusErnerudh, JanAspenberg, Per
Av organisationen
Avdelningen för Kirurgi, Ortopedi och OnkologiMedicinska fakultetenAvdelningen för neuro- och inflammationsvetenskapKlinisk immunologi och transfusionsmedicinOrtopedkliniken i Linköping
I samma tidskrift
Acta Orthopaedica
Ortopedi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 67 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 211 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf