liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Bayesian Diffusion Tensor Estimation with Spatial Priors
Linköpings universitet, Institutionen för medicinsk teknik, Avdelningen för medicinsk teknik. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
Linköpings universitet, Institutionen för datavetenskap, Statistik och maskininlärning. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för datavetenskap, Statistik och maskininlärning. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0003-2193-6003
Linköpings universitet, Institutionen för medicinsk teknik, Avdelningen för medicinsk teknik. Linköpings universitet, Institutionen för datavetenskap, Statistik och maskininlärning. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
Visa övriga samt affilieringar
2017 (Engelska)Ingår i: CAIP 2017: Computer Analysis of Images and Patterns, 2017, Vol. 10424, s. 372-383Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Spatial regularization is a technique that exploits the dependence between nearby regions to locally pool data, with the effect of reducing noise and implicitly smoothing the data. Most of the currently proposed methods are focused on minimizing a cost function, during which the regularization parameter must be tuned in order to find the optimal solution. We propose a fast Markov chain Monte Carlo (MCMC) method for diffusion tensor estimation, for both 2D and 3D priors data. The regularization parameter is jointly with the tensor using MCMC. We compare FA (fractional anisotropy) maps for various b-values using three diffusion tensor estimation methods: least-squares and MCMC with and without spatial priors. Coefficient of variation (CV) is calculated to measure the uncertainty of the FA maps calculated from the MCMC samples, and our results show that the MCMC algorithm with spatial priors provides a denoising effect and reduces the uncertainty of the MCMC samples.

Ort, förlag, år, upplaga, sidor
2017. Vol. 10424, s. 372-383
Serie
Lecture Notes in Computer Science, ISSN 0302-9743, E-ISSN 1611-3349 ; 10424
Nyckelord [en]
Spatial regularization, Diffusion tensor, Spatial priors Markov chain, Monte Carlo Fractional anisotropy
Nationell ämneskategori
Medicinteknik
Identifikatorer
URN: urn:nbn:se:liu:diva-139844DOI: 10.1007/978-3-319-64689-3_30ISI: 000432085900030ISBN: 978-3-319-64689-3 (digital)ISBN: 978-3-319-64688-6 (tryckt)OAI: oai:DiVA.org:liu-139844DiVA, id: diva2:1133926
Konferens
International Conference on Computer Analysis of Images and Patterns
Anmärkning

Funding agencies: Information Technology for European Advancement (ITEA) 3 Project BENEFIT (better effectiveness and efficiency by measuring and modelling of interventional therapy); Swedish Research Council [2015-05356, 2013-5229]; National Institute of Dental and Craniof

Tillgänglig från: 2017-08-17 Skapad: 2017-08-17 Senast uppdaterad: 2018-06-01

Open Access i DiVA

fulltext(2748 kB)37 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 2748 kBChecksumma SHA-512
7e6bd6b4a5bb9bb757ddc1989dda3d776ed7efb4fc517a8b50119add552cb3f82a521658cab8b2657f25c73e89b31d0f302a2d1f274375372bf25cedcb123d3c
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Personposter BETA

Gu, XuanSidén, PerWegmann, BertilEklund, AndersVillani, MattiasKnutsson, Hans

Sök vidare i DiVA

Av författaren/redaktören
Gu, XuanSidén, PerWegmann, BertilEklund, AndersVillani, MattiasKnutsson, Hans
Av organisationen
Avdelningen för medicinsk teknikTekniska fakultetenCentrum för medicinsk bildvetenskap och visualisering, CMIVStatistik och maskininlärning
Medicinteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 37 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 157 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf