liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Feature Engineering and Machine Learning for Driver Sleepiness Detection
Linköpings universitet, Institutionen för medicinsk teknik.
Linköpings universitet, Institutionen för medicinsk teknik.
2017 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

Falling asleep while operating a moving vehicle is a contributing factor to the statistics of road related accidents. It has been estimated that 20% of all accidents where a vehicle has been involved are due to sleepiness behind the wheel. To prevent accidents and to save lives are of uttermost importance. In this thesis, given the world’s largest dataset of driver participants, two methods of evaluating driver sleepiness have been evaluated. The first method was based on the creation of epochs from lane departures and KSS, whilst the second method was based solely on the creation of epochs based on KSS. From the epochs, a number of features were extracted from both physiological signals and the car’s controller area network. The most important features were selected via a feature selection step, using sequential forward floating selection. The selected features were trained and evaluated on linear SVM, Gaussian SVM, KNN, random forest and adaboost. The random forest classifier was chosen in all cases when classifying previously unseen data.The results shows that method 1 was prone to overfit. Method 2 proved to be considerably better, and did not suffer from overfitting. The test results regarding method 2 were as follows; sensitivity = 80.3%, specificity = 96.3% and accuracy = 93.5%.The most prominent features overall were found in the EEG and EOG domain together with the sleep/wake predictor feature. However indications have been made that complexities might contribute to the detection of sleepiness as well, especially the Higuchi’s fractal dimension.

Ort, förlag, år, upplaga, sidor
2017. , s. 74
Nyckelord [en]
Driver Sleepiness Detection, KSS, Physiological Signals, Controller Area Network, Machine Learning, Feature Selection, SWP, Signal Processing
Nationell ämneskategori
Medicinteknik
Identifikatorer
URN: urn:nbn:se:liu:diva-142001ISRN: LIU-IMT-TFK-A--17/548--SEOAI: oai:DiVA.org:liu-142001DiVA, id: diva2:1149864
Externt samarbete
Statens väg- och transportforskningsinstitut, VTI
Handledare
Examinatorer
Tillgänglig från: 2017-10-25 Skapad: 2017-10-17 Senast uppdaterad: 2017-10-25Bibliografiskt granskad

Open Access i DiVA

fulltext(1482 kB)122 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1482 kBChecksumma SHA-512
6665d5a0a1bc01b54d2399c87cc9b6b21e3114f3153073ebd1587bdd0956a68fef8200ac95e48855895bda0ba31777f1464809f6c1ec5152919f9c58237f0cc7
Typ fulltextMimetyp application/pdf

Sök vidare i DiVA

Av författaren/redaktören
Keelan, OliverMårtensson, Henrik
Av organisationen
Institutionen för medicinsk teknik
Medicinteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 122 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 891 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf