liu.seSök publikationer i DiVA
Driftstörningar
Just nu har vi driftstörningar på sök-portalerna på grund av hög belastning. Vi arbetar på att lösa problemet, ni kan tillfälligt mötas av ett felmeddelande.
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
ESTIMATES OF EIGENVALUES OF SCHRODINGER OPERATORS ON THE HALF-LINE WITH COMPLEX-VALUED POTENTIALS
Linköpings universitet, Matematiska institutionen, Matematik och tillämpad matematik. Linköpings universitet, Tekniska fakulteten.
2017 (Engelska)Ingår i: Operators and Matrices, ISSN 1846-3886, E-ISSN 1848-9974, Vol. 11, nr 2, s. 369-380Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Estimates for eigenvalues of Schrodinger operators on the half-line with complex-valued potentials are established. Schrodinger operators with potentials belonging to weak Lebesques classes are also considered. The results cover those known previously due to R. L. Frank, A. Laptev and R. Seiringer

Ort, förlag, år, upplaga, sidor
ELEMENT , 2017. Vol. 11, nr 2, s. 369-380
Nyckelord [en]
Schrodinger operators; complex potentials; estimation of eigenvalues
Nationell ämneskategori
Matematisk analys
Identifikatorer
URN: urn:nbn:se:liu:diva-142843DOI: 10.7153/oam-11-25ISI: 000413116800006OAI: oai:DiVA.org:liu-142843DiVA, id: diva2:1154918
Tillgänglig från: 2017-11-06 Skapad: 2017-11-06 Senast uppdaterad: 2018-02-13
Ingår i avhandling
1. Resolvent Estimates and Bounds on Eigenvalues for Schrödinger and Dirac Operators
Öppna denna publikation i ny flik eller fönster >>Resolvent Estimates and Bounds on Eigenvalues for Schrödinger and Dirac Operators
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This thesis concerns the spectral theory of Schrödinger and Dirac operators. The main results relate to the problems of estimating perturbed eigenvalues. The thesis is based on four papers.

The first paper focuses on the problem of localization of perturbed eigenvalues for multidimensional Schrödinger operators. Bounds for eigenvalues, lying outside the essential spectrum, are obtained in terms of the Lebesgue's classes. The methods used make it possible to consider the general case of non-self-adjoint operators, and involve the weak Lebesgue's potentials. The results are extended to the case of the polyharmonic operators.

In the second paper, the problem of location of the discrete spectrum is solved for the class of Schrödinger operators considered on the half-line. The general case of complex-valued potentials, imposing various boundary conditions, typically Dirichlet and Neumann conditions, is considered. General mixed boundary conditions are also treated.

The third paper is devoted to Dirac operators. The case of spherically symmetric potentials is considered. Estimates for the eigenvalues are derived from the asymptotic behaviour of the resolvent of the free Dirac operator. For the massless Dirac operators, whose essential spectrum is the whole real line, optimal bounds for the imaginary part of the eigenvalues are established.

In the fourth paper, new Hardy-Carleman type inequalities for Dirac operators are proven. Concrete Carleman type inequalities, useful in applications, Agmon and also Treve type inequalities are derived from the general results by involving special weight functions. The results are extended to the case of the Dirac operator describing the relativistic particle in a potential magnetic field.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2018. s. 39
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1906
Nyckelord
Spectral theory, Schrödinger operators, polyharmonic operators, Dirac operators, non-self-adjoint perturbations, complex potential, estimation of eigenvalues, Carleman inequalities, Hardy inequalities
Nationell ämneskategori
Matematisk analys
Identifikatorer
urn:nbn:se:liu:diva-145173 (URN)10.3384/diss.diva-145173 (DOI)9789176853627 (ISBN)
Disputation
2018-03-28, BL32, B-huset, Campus Valla, Linköping, 10:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2018-02-14 Skapad: 2018-02-13 Senast uppdaterad: 2019-09-30Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Sök vidare i DiVA

Av författaren/redaktören
Enblom, Alexandra
Av organisationen
Matematik och tillämpad matematikTekniska fakulteten
I samma tidskrift
Operators and Matrices
Matematisk analys

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 240 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf