liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Low-Rank Modifications of Riccati Factorizations for Model Predictive Control
Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0001-6957-2603
2018 (Engelska)Ingår i: IEEE Transactions on Automatic Control, ISSN 0018-9286, E-ISSN 1558-2523, Vol. 63, nr 3, s. 872-879Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In Model Predictive Control (MPC), the control input is computed by solving a constrained finite-time optimal control (CFTOC) problem at each sample in the control loop. The main computational effort when solving the CFTOC problem using an active-set (AS) method is often spent on computing the search directions, which in MPC corresponds to solving unconstrained finite-time optimal control (UFTOC) problems. This is commonly performed using Riccati recursions or generic sparsity exploiting algorithms. In this work the focus is efficient search direction computations for AS type methods. The system of equations to be solved at each AS iteration is changed only by a low-rank modification of the previous one, and exploiting this structured change is important for the performance of AS type solvers. In this paper, theory for how to exploit these low-rank changes by modifying the Riccati factorization between AS iterations in a structured way is presented. A numerical evaluation of the proposed algorithm shows that the computation time can be significantly reduced by modifying, instead of re-computing, the Riccati factorization. This speed-up can be important for AS type solvers used for linear, nonlinear and hybrid MPC.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2018. Vol. 63, nr 3, s. 872-879
Nyckelord [en]
Indexes; Linear matrix inequalities; Optimal control; Optimization; Predictive control; Search problems; Sparse matrices; MPC; Riccati recursion; low-rank; optimization
Nationell ämneskategori
Reglerteknik
Identifikatorer
URN: urn:nbn:se:liu:diva-142894DOI: 10.1109/TAC.2017.2737228ISI: 000426276500025OAI: oai:DiVA.org:liu-142894DiVA, id: diva2:1155701
Tillgänglig från: 2017-11-09 Skapad: 2017-11-09 Senast uppdaterad: 2018-03-20Bibliografiskt granskad

Open Access i DiVA

Low-Rank Modifications of Riccati Factorizations for Model Predictive Control(890 kB)66 nedladdningar
Filinformation
Filnamn FULLTEXT04.pdfFilstorlek 890 kBChecksumma SHA-512
00fd54de30c60398188cb2ad5c8e441646b1682c73dc18da6b4d169bb9d6aa3e3a82ad464797ca67d11f512e7990f8e58d08464f2e89e298f0417075c402af30
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Personposter BETA

Nielsen, IsakAxehill, Daniel

Sök vidare i DiVA

Av författaren/redaktören
Nielsen, IsakAxehill, Daniel
Av organisationen
ReglerteknikTekniska fakulteten
I samma tidskrift
IEEE Transactions on Automatic Control
Reglerteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 87 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 368 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf