liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Tractability conditions for numeric CSPs
Linköpings universitet, Institutionen för datavetenskap, Programvara och system. Linköpings universitet, Tekniska fakulteten.
Univ Paris Est Marne la Vallee, France.
2018 (Engelska)Ingår i: Theoretical Computer Science, ISSN 0304-3975, E-ISSN 1879-2294, Vol. 715, s. 21-34Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The computational complexity of the constraint satisfaction problem (CSP) with semilinear relations over the reals has gained recent attraction. As a result, its complexity is known for all finite sets of semilinear relations containing the relation R+ = {(x, y, z) is an element of R-3 vertical bar x + y = z}. We consider larger and more expressive classes of relations such as semialgebraic and o-minimal relations. We present a general result for characterising computationally hard fragments and, under certain side conditions, this result implies that polynomial-time solvable fragments are only to be found within two limited families of sets of relations. In the setting of semialgebraic relation, our result takes on a simplified form and we provide a full complexity classification for constraint languages that consist of algebraic varieties. Full classifications like the one obtained here for algebraic varieties or the one for semilinear relations appear to be rare and we discuss several barriers for obtaining further such results. These barriers have strong connections with well-known open problems concerning the complexity of various restrictions of convex programming. (c) 2018 Elsevier B.V. All rights reserved.

Ort, förlag, år, upplaga, sidor
ELSEVIER SCIENCE BV , 2018. Vol. 715, s. 21-34
Nyckelord [en]
Constraint satisfaction problem; Semialgebraic constraint; o-minimality; Algebraic variety; Computational complexity
Nationell ämneskategori
Diskret matematik
Identifikatorer
URN: urn:nbn:se:liu:diva-145739DOI: 10.1016/j.tcs.2018.01.013ISI: 000426222500002OAI: oai:DiVA.org:liu-145739DiVA, id: diva2:1192535
Anmärkning

Funding Agencies|Swedish Research Council (VR) [621-2012-3239]

Tillgänglig från: 2018-03-22 Skapad: 2018-03-22 Senast uppdaterad: 2018-03-22

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Sök vidare i DiVA

Av författaren/redaktören
Jonsson, Peter
Av organisationen
Programvara och systemTekniska fakulteten
I samma tidskrift
Theoretical Computer Science
Diskret matematik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 114 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf