liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Joint User Activity and Non-Coherent Data Detection in mMTC-Enabled Massive MIMO Using Machine Learning Algorithms
Linköpings universitet, Institutionen för systemteknik, Kommunikationssystem. (Communication Systems)ORCID-id: 0000-0002-2722-4405
Linköpings universitet, Institutionen för systemteknik, Kommunikationssystem. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0002-7599-4367
2018 (Engelska)Ingår i: Proceedings of International ITG Workshop on Smart Antennas (WSA), Berlin, Germany, 2018Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Machine-type communication (MTC) services are expected to be an integral part of the future cellular systems. A key challenge of MTC, especially for the massive MTC (mMTC), is the detection of active devices among a large number of devices. The sparse characteristics of mMTC makes compressed sensing (CS) approaches a promising solution to the device detection problem. CS-based techniques are shown to outperform conventional device detection approaches. However, utilizing CS-based approaches for device detection along with channel estimation and using the acquired estimates for coherent data transmission may not be the optimal approach, especially for the cases where the goal is to convey only a few bits of data. In this work, we propose a non-coherent transmission technique for the mMTC uplink and compare its performance with coherent transmission. Furthermore, we demonstrate that it is possible to obtain more accurate channel state information by combining the conventional estimators with CS-based techniques.

Ort, förlag, år, upplaga, sidor
Berlin, Germany, 2018.
Nyckelord [en]
Massive MIMO, Machine Type Communications
Nationell ämneskategori
Kommunikationssystem
Identifikatorer
URN: urn:nbn:se:liu:diva-149577ISBN: 978-3-8007-4541-8 (tryckt)OAI: oai:DiVA.org:liu-149577DiVA, id: diva2:1231462
Konferens
22nd International ITG workshop on smart antennas (WSA), 2018
Forskningsfinansiär
ELLIIT - The Linköping‐Lund Initiative on IT and Mobile CommunicationsVetenskapsrådetTillgänglig från: 2018-07-06 Skapad: 2018-07-06 Senast uppdaterad: 2018-07-06

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Senel, KamilLarsson, Erik G.

Sök vidare i DiVA

Av författaren/redaktören
Senel, KamilLarsson, Erik G.
Av organisationen
KommunikationssystemTekniska fakulteten
Kommunikationssystem

Sök vidare utanför DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 14 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf