liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A fractal graph model of capillary type systems
Linköpings universitet, Matematiska institutionen, Matematik och tillämpad matematik. Linköpings universitet, Tekniska fakulteten.
St Petersburg State Univ, Russia; St Petersburg State Polytech Univ, Russia; RAS, Russia.
Steklov Math Inst, Russia.
2018 (Engelska)Ingår i: Complex Variables and Elliptic Equations, ISSN 1747-6933, E-ISSN 1747-6941, Vol. 63, nr 7-8, s. 1044-1068Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We consider blood flow in a vessel with an attached capillary system. The latter is modelled with the help of a corresponding fractal graph whose edges are supplied with ordinary differential equations obtained by the dimension-reduction procedure from a three-dimensional model of blood flow in thin vessels. The Kirchhoff transmission conditions must be satisfied at each interior vertex. The geometry and physical parameters of this system are described by a finite number of scaling factors which allow the system to have self-reproducing solutions. Namely, these solutions are determined by the factors values on a certain fragment of the fractal graph and are extended to its rest part by virtue of these scaling factors. The main result is the existence and uniqueness of self-reproducing solutions, whose dependence on the scaling factors of the fractal graph is also studied. As a corollary we obtain a relation between the pressure and flux at the junction, where the capillary system is attached to the blood vessel. This relation leads to the Robin boundary condition at the junction and this condition allows us to solve the problem for the flow in the blood vessel without solving it for the attached capillary system.

Ort, förlag, år, upplaga, sidor
TAYLOR & FRANCIS LTD , 2018. Vol. 63, nr 7-8, s. 1044-1068
Nyckelord [en]
Fractal graph; blood vessel; capillary system; percolation; quiet flow; ideal liquid; Reynolds equation
Nationell ämneskategori
Matematisk analys
Identifikatorer
URN: urn:nbn:se:liu:diva-150318DOI: 10.1080/17476933.2017.1349117ISI: 000439381000010OAI: oai:DiVA.org:liu-150318DiVA, id: diva2:1239449
Anmärkning

Funding Agencies|Swedish Research Council (VR) [EO418401]; Russian Foundation for Basic Research [15-01-02175]; Linkoping University (Sweden); Linkoping University; RFBR [15-31-20600, 16-31-60112]

Tillgänglig från: 2018-08-16 Skapad: 2018-08-16 Senast uppdaterad: 2018-08-16

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Sök vidare i DiVA

Av författaren/redaktören
Kozlov, Vladimir
Av organisationen
Matematik och tillämpad matematikTekniska fakulteten
I samma tidskrift
Complex Variables and Elliptic Equations
Matematisk analys

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 1715 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf