liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Design Space Exploration for Powertrain Electrification using Gaussian Processes
(Center for Automotive Research, College of Engineering, The Ohio State University, OH, USA)ORCID-id: 0000-0003-0808-052X
(Center for Automotive Research, College of Engineering, The Ohio State University, OH, USA)
(Center for Automotive Research, College of Engineering, The Ohio State University, OH, USA)
2018 (Engelska)Ingår i: 2018 Annual American Control Conference (ACC), 2018, s. 846-851Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Design space exploration of hybrid electric vehicles is an important multi-objective global optimization problem. One of the main objectives is to minimize fuel consumption while maintaining satisfactory driveability performance and vehicle cost. The design problem often includes multiple design options, including different driveline architectures and component sizes, where different candidates have various trade-offs between different, in many cases contradictory, performance requirements. Thus, there is no global optimum but a set of Pareto-optimal solutions to be explored. The objective functions can be expensive to evaluate, due to time-consuming simulations, which requires careful selection of which candidates to evaluate. A design space exploration algorithm is proposed for finding the set of Pareto-optimal solutions when the design search space includes multiple design options. As a case study, powertrain optimization is performed for a medium-sized series hybrid electric delivery truck.

Ort, förlag, år, upplaga, sidor
2018. s. 846-851
Nyckelord [en]
Gaussian processes;hybrid electric vehicles;Pareto optimisation;power transmission (mechanical);hybrid electric vehicles;multiobjective global optimization problem;satisfactory driveability performance;vehicle cost;Pareto-optimal solutions;powertrain optimization;medium-sized series hybrid electric delivery truck;powertrain electrification;Linear programming;Space exploration;Mechanical power transmission;Gaussian processes;Optimization;Hybrid electric vehicles;Fuels
Nationell ämneskategori
Energiteknik
Identifikatorer
URN: urn:nbn:se:liu:diva-151301DOI: 10.23919/ACC.2018.8430899OAI: oai:DiVA.org:liu-151301DiVA, id: diva2:1248572
Konferens
American Control Conference
Tillgänglig från: 2018-09-17 Skapad: 2018-09-17 Senast uppdaterad: 2018-09-17

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Person

Jung, Daniel

Sök vidare i DiVA

Av författaren/redaktören
Jung, Daniel
Energiteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 182 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf