liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Receding-Horizon Lattice-based Motion Planning with Dynamic Obstacle Avoidance
Linköpings universitet, Institutionen för datavetenskap, Artificiell intelligens och integrerade datorsystem. Linköpings universitet, Tekniska fakulteten. (KPLAB)
Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0002-1795-5992
Linköpings universitet, Institutionen för datavetenskap, Artificiell intelligens och integrerade datorsystem. Linköpings universitet, Tekniska fakulteten. (KPLAB)ORCID-id: 0000-0002-8546-4431
Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0001-6957-2603
Visa övriga samt affilieringar
2018 (Engelska)Ingår i: 2018 IEEE Conference on Decision and Control (CDC), Institute of Electrical and Electronics Engineers (IEEE), 2018, s. 4467-4474Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

A key requirement of autonomous vehicles is the capability to safely navigate in their environment. However, outside of controlled environments, safe navigation is a very difficult problem. In particular, the real-world often contains both complex 3D structure, and dynamic obstacles such as people or other vehicles. Dynamic obstacles are particularly challenging, as a principled solution requires planning trajectories with regard to both vehicle dynamics, and the motion of the obstacles. Additionally, the real-time requirements imposed by obstacle motion, coupled with real-world computational limitations, make classical optimality and completeness guarantees difficult to satisfy. We present a unified optimization-based motion planning and control solution, that can navigate in the presence of both static and dynamic obstacles. By combining optimal and receding-horizon control, with temporal multi-resolution lattices, we can precompute optimal motion primitives, and allow real-time planning of physically-feasible trajectories in complex environments with dynamic obstacles. We demonstrate the framework by solving difficult indoor 3D quadcopter navigation scenarios, where it is necessary to plan in time. Including waiting on, and taking detours around, the motions of other people and quadcopters.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2018. s. 4467-4474
Serie
Conference on Decision and Control (CDC), ISSN 2576-2370 ; 2018
Nyckelord [en]
Motion Planning, Optimal Control, Autonomous System, UAV, Dynamic Obstacle Avoidance, Robotics
Nationell ämneskategori
Reglerteknik
Identifikatorer
URN: urn:nbn:se:liu:diva-152131DOI: 10.1109/CDC.2018.8618964ISBN: 9781538613955 (digital)ISBN: 9781538613948 (digital)ISBN: 9781538613962 (digital)OAI: oai:DiVA.org:liu-152131DiVA, id: diva2:1256821
Konferens
2018 IEEE 57th Annual Conference on Decision and Control (CDC),17-19 December, Miami, Florida, USA
Forskningsfinansiär
VINNOVAKnut och Alice Wallenbergs StiftelseStiftelsen för strategisk forskning (SSF)ELLIIT - The Linköping‐Lund Initiative on IT and Mobile CommunicationsVetenskapsrådetLinnaeus research environment CADICSCUGS (National Graduate School in Computer Science)
Anmärkning

This work was partially supported by FFI/VINNOVA, the Wallenberg Artificial Intelligence, Autonomous Systems and Software Program (WASP) funded by Knut and Alice Wallenberg Foundation, the Swedish Foundation for Strategic Research (SSF) project Symbicloud, the ELLIIT Excellence Center at Linköping-Lund for Information Technology, Swedish Research Council (VR) Linnaeus Center CADICS, and the National Graduate School in Computer Science, Sweden (CUGS).

Tillgänglig från: 2018-10-18 Skapad: 2018-10-18 Senast uppdaterad: 2019-01-30Bibliografiskt granskad

Open Access i DiVA

Receding-Horizon Lattice-based Motion Planning with Dynamic Obstacle Avoidance(906 kB)83 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 906 kBChecksumma SHA-512
2d6e0a0b0e854d7800252d37cb0a552db8fd10f37b9f5cf49433e7974af985c62cd5baa5451487ce0bd59eaf0b5b803300685c2cacd0745815401c8cdba70922
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Personposter BETA

Andersson, OlovLjungqvist, OskarTiger, MattiasAxehill, DanielHeintz, Fredrik

Sök vidare i DiVA

Av författaren/redaktören
Andersson, OlovLjungqvist, OskarTiger, MattiasAxehill, DanielHeintz, Fredrik
Av organisationen
Artificiell intelligens och integrerade datorsystemTekniska fakultetenReglerteknik
Reglerteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 83 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 5122 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf