liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Identification of Temporally Varying Areas of Interest in Long-Duration Eye-Tracking Data Sets
Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten. (Information Visualization)
Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten. (Information Visualization)ORCID-id: 0000-0003-4761-8601
Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten. (Information Visualization)
Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Centrum för klimatpolitisk forskning, CSPR. (Information Visualization)
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: IEEE Transactions on Visualization and Computer Graphics, ISSN 1077-2626, E-ISSN 1941-0506, s. 87-97Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Eye-tracking has become an invaluable tool for the analysis of working practices in many technological fields of activity. Typically studies focus on short tasks and use static expected areas of interest (AoI) in the display to explore subjects’ behaviour, making the analyst’s task quite straightforward. In long-duration studies, where the observations may last several hours over a complete work session, the AoIs may change over time in response to altering workload, emergencies or other variables making the analysis more difficult. This work puts forward a novel method to automatically identify spatial AoIs changing over time through a combination of clustering and cluster merging in the temporal domain. A visual analysis system based on the proposed methods is also presented. Finally, we illustrate our approach within the domain of air traffic control, a complex task sensitive to prevailing conditions over long durations, though it is applicable to other domains such as monitoring of complex systems. 

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2019. s. 87-97
Nyckelord [en]
Eye-tracking data, areas of interest, clustering, minimum spanning tree, temporal data, spatio-temporal data
Nationell ämneskategori
Datorsystem
Identifikatorer
URN: urn:nbn:se:liu:diva-152714DOI: 10.1109/TVCG.2018.2865042ISI: 000452640000009PubMedID: 30183636Scopus ID: 2-s2.0-85052788669OAI: oai:DiVA.org:liu-152714DiVA, id: diva2:1263782
Anmärkning

Funding agencies: Swedish Research Council [2013-4939]; RESKILL project - Swedish Transport Administration; Swedish Maritime Administration; Swedish Air Navigation Service Provider LFV

Tillgänglig från: 2018-11-16 Skapad: 2018-11-16 Senast uppdaterad: 2019-11-25Bibliografiskt granskad
Ingår i avhandling
1. Data Abstraction and Pattern Identification in Time-series Data
Öppna denna publikation i ny flik eller fönster >>Data Abstraction and Pattern Identification in Time-series Data
2019 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Data sources such as simulations, sensor networks across many application domains generate large volumes of time-series data which exhibit characteristics that evolve over time. Visual data analysis methods can help us in exploring and understanding the underlying patterns present in time-series data but, due to their ever-increasing size, the visual data analysis process can become complex. Large data sets can be handled using data abstraction techniques by transforming the raw data into a simpler format while, at the same time, preserving significant features that are important for the user. When dealing with time-series data, abstraction techniques should also take into account the underlying temporal characteristics.  

This thesis focuses on different data abstraction and pattern identification methods particularly in the cases of large 1D time-series and 2D spatio-temporal time-series data which exhibit spatiotemporal discontinuity. Based on the dimensionality and characteristics of the data, this thesis proposes a variety of efficient data-adaptive and user-controlled data abstraction methods that transform the raw data into a symbol sequence. The transformation of raw time-series into a symbol sequence can act as input to different sequence analysis methods from data mining and machine learning communities to identify interesting patterns of user behavior.  

In the case of very long duration 1D time-series, locally adaptive and user-controlled data approximation methods were presented to simplify the data, while at the same time retaining the perceptually important features. The simplified data were converted into a symbol sequence and a sketch-based pattern identification was then used to identify patterns in the symbolic data using regular expression based pattern matching. The method was applied to financial time-series and patterns such as head-and-shoulders, double and triple-top patterns were identified using hand drawn sketches in an interactive manner. Through data smoothing, the data approximation step also enables visualization of inherent patterns in the time-series representation while at the same time retaining perceptually important points.  

Very long duration 2D spatio-temporal eye tracking data sets that exhibit spatio-temporal discontinuity was transformed into symbolic data using scalable clustering and hierarchical cluster merging processes, each of which can be parallelized. The raw data is transformed into a symbol sequence with each symbol representing a region of interest in the eye gaze data. The identified regions of interest can also be displayed in a Space-Time Cube (STC) that captures both the temporal and contextual information. Through interactive filtering, zooming and geometric transformation, the STC representation along with linked views enables interactive data exploration. Using different sequence analysis methods, the symbol sequences are analyzed further to identify temporal patterns in the data set. Data collected from air traffic control officers from the domain of Air traffic control were used as application examples to demonstrate the results.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2019. s. 58
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2030
Nationell ämneskategori
Mediateknik
Identifikatorer
urn:nbn:se:liu:diva-162220 (URN)10.3384/diss.diva-162220 (DOI)9789179299651 (ISBN)
Disputation
2019-12-13, Domteatern, Visualiseringscenter C, Kungsgatan 54, 60233 Norrköping, Norrköping, 09:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2019-11-25 Skapad: 2019-11-25 Senast uppdaterad: 2019-11-25Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Personposter BETA

Vrotsou, KaterinaVitoria, AidaJohansson, JimmyCooper, Matthew

Sök vidare i DiVA

Av författaren/redaktören
Muthumanickam, PrithivirajVrotsou, KaterinaVitoria, AidaJohansson, JimmyCooper, Matthew
Av organisationen
Medie- och InformationsteknikTekniska fakultetenCentrum för klimatpolitisk forskning, CSPR
I samma tidskrift
IEEE Transactions on Visualization and Computer Graphics
Datorsystem

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 124 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf