liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Comparison of the Diagnostic Performance of Coronary Computed Tomography Angiography-Derived Fractional Flow Reserve in Patients With Versus Without Diabetes Mellitus (from the MACHINE Consortium)
Erasmus MC, Netherlands; Erasmus MC, Netherlands.
Erasmus MC, Netherlands; Erasmus MC, Netherlands.
Erasmus MC, Netherlands.
Univ Ulsan, South Korea.
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: American Journal of Cardiology, ISSN 0002-9149, E-ISSN 1879-1913, Vol. 123, nr 4, s. 537-543Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Coronary computed tomography angiography-derived fractional flow reserve (CT-FFR) is a noninvasive application to evaluate the hemodynamic impact of coronary artery disease by simulating invasively measured FFR based on CT data. CT-FFR is based on the assumption of a normal coronary microvascular response. We assessed the diagnostic performance of a machine-learning based application for on-site computation of CT-FFR in patients with and without diabetes mellitus with suspected coronary artery disease. The study population included 75 diabetic and 276 nondiabetic patients who were enrolled in the MACHINE consortium. The overall diagnostic performance of coronary CT angiography alone and in combination with CT-FFR were analyzed with direct invasive FFR comparison in 110 coronary vessels of the diabetic group and in 415 coronary vessels of the nondiabetic group. Per-vessel discrimination of lesion-specific ischemia by CT-FFR was assessed by the area under the receiver operating characteristic curves. The overall diagnostic accuracy of CT-FFR in diabetic patients was 83% and in nondiabetic patients 75% (p = 0.088), showing improvement over the diagnostic accuracy of coronary CT angiography, which was 58% and 65% (p = 0.223), respectively. In addition, the diagnostic accuracy of CT-FFR was similar between diabetic and nondiabetic patients per stratified CT-FFR group (CT-FFR amp;lt; 0.6, 0.6 to 0.69, 0.7 to 0.79, 0.8 to 0.89, amp;gt;= 0.9). The area under the curves for diabetic and nondiabetic patients were also comparable, 0.88 and 0.82 (p = 0.113), respectively. In conclusion, on-site machine-learning CT-FFR analysis improved the diagnostic performance of coronary CT angiography and accurately discriminated lesion-specific ischemia in both diabetic and nondiabetic patients suspected of coronary artery disease. (C) 2018 Elsevier Inc. All rights reserved.

Ort, förlag, år, upplaga, sidor
EXCERPTA MEDICA INC-ELSEVIER SCIENCE INC , 2019. Vol. 123, nr 4, s. 537-543
Nationell ämneskategori
Radiologi och bildbehandling
Identifikatorer
URN: urn:nbn:se:liu:diva-155003DOI: 10.1016/j.amjcard.2018.11.024ISI: 000459226300001PubMedID: 30553510OAI: oai:DiVA.org:liu-155003DiVA, id: diva2:1297528
Anmärkning

Funding Agencies|Dutch Heart Foundation [NHS 2014T061, NHS 2013T071]

Tillgänglig från: 2019-03-20 Skapad: 2019-03-20 Senast uppdaterad: 2019-03-20

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMed

Sök vidare i DiVA

Av författaren/redaktören
de Geer, JakobPersson, Anders
Av organisationen
Avdelningen för radiologiska vetenskaperMedicinska fakultetenCentrum för medicinsk bildvetenskap och visualisering, CMIVRöntgenkliniken i Linköping
I samma tidskrift
American Journal of Cardiology
Radiologi och bildbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 10 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf