liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
CAD-Based Pose Estimation - Algorithm Investigation
Linköpings universitet, Institutionen för systemteknik, Datorseende.
2019 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

One fundamental task in robotics is random bin-picking, where it is important to be able to detect an object in a bin and estimate its pose to plan the motion of a robotic arm. For this purpose, this thesis work aimed to investigate and evaluate algorithms for 6D pose estimation when the object was given by a CAD model. The scene was given by a point cloud illustrating a partial 3D view of the bin with multiple instances of the object. Two algorithms were thus implemented and evaluated. The first algorithm was an approach based on Point Pair Features, and the second was Fast Global Registration. For evaluation, four different CAD models were used to create synthetic data with ground truth annotations.

It was concluded that the Point Pair Feature approach provided a robust localization of objects and can be used for bin-picking. The algorithm appears to be able to handle different types of objects, however, with small limitations when the object has flat surfaces and weak texture or many similar details. The disadvantage with the algorithm was the execution time. Fast Global Registration, on the other hand, did not provide a robust localization of objects and is thus not a good solution for bin-picking.

Ort, förlag, år, upplaga, sidor
2019. , s. 53
Nyckelord [en]
6D pose estimation, bin-picking, point cloud, Point Pair Feature, Fast Global Registration
Nationell ämneskategori
Datorseende och robotik (autonoma system)
Identifikatorer
URN: urn:nbn:se:liu:diva-157776ISRN: LiTH-ISY-EX--19/5239--SEOAI: oai:DiVA.org:liu-157776DiVA, id: diva2:1330419
Externt samarbete
SICK IVP
Ämne / kurs
Examensarbete i Datorseende
Presentation
2019-06-11, Algoritmen, 08:15 (Engelska)
Handledare
Examinatorer
Tillgänglig från: 2019-06-26 Skapad: 2019-06-25 Senast uppdaterad: 2019-06-26Bibliografiskt granskad

Open Access i DiVA

fulltext(13137 kB)107 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 13137 kBChecksumma SHA-512
38a0203b169148782a5af99ce07331412a8d92c7d88555436f6ed9b77531da4f7c34bb29f8d8fc600f118c439da94c8ebd71bd8099b571b1a8842f8e46a52620
Typ fulltextMimetyp application/pdf

Sök vidare i DiVA

Av författaren/redaktören
Lef, Annette
Av organisationen
Datorseende
Datorseende och robotik (autonoma system)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 107 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 554 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf