liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Automatic Detection of Alzheimer Disease Based on Histogram and Random Forest
Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
Effat Univ, Saudi Arabia.
2020 (Engelska)Ingår i: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING, CMBEBIH 2019, SPRINGER , 2020, Vol. 73, s. 91-96Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Alzheimer disease is one of the most prevalent dementia types affecting elder population. On-time detection of the Alzheimer disease (AD) is valuable for finding new approaches for the AD treatment. Our primary interest lies in obtaining a reliable, but simple and fast model for automatic AD detection. The approach we introduced in the present contribution to identify AD is based on the application of machine learning (ML) techniques. For the first step, we use histogram to transform brain images to feature vectors, containing the relevant "brain" features, which will later serve as the inputs in the classification step. Next, we use the ML algorithms in the classification task to identify AD. The model presented and elaborated in the present contribution demonstrated satisfactory performances. Experimental results suggested that the Random Forest classifier can discriminate the AD subjects from the control subjects. The presented modeling approach, consisting of the histogram as the feature extractor and Random Forest as the classifier, yielded to the sufficiently high overall accuracy rate of 85.77%.

Ort, förlag, år, upplaga, sidor
SPRINGER , 2020. Vol. 73, s. 91-96
Serie
IFMBE Proceedings, ISSN 1680-0737
Nyckelord [en]
Alzheimer disease; Histogram; Random forest classifier
Nationell ämneskategori
Medicinsk bildvetenskap
Identifikatorer
URN: urn:nbn:se:liu:diva-161583DOI: 10.1007/978-3-030-17971-7_14ISI: 000491311000014ISBN: 978-3-030-17971-7 (digital)ISBN: 978-3-030-17970-0 (tryckt)OAI: oai:DiVA.org:liu-161583DiVA, id: diva2:1368248
Konferens
International Conference on Medical and Biological Engineering in Bosnia and Herzegovina (CMBEBIH)
Tillgänglig från: 2019-11-06 Skapad: 2019-11-06 Senast uppdaterad: 2025-02-09

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Sök vidare i DiVA

Av författaren/redaktören
Alickovic, Emina
Av organisationen
ReglerteknikTekniska fakulteten
Medicinsk bildvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 611 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf