liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Systematic assessment of critical factors for the economic performance of landfill mining in Europe: What drives the economy of landfill mining?
Univ Kassel, Germany; TU Wien, Austria.
Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Industriell miljöteknik. Linköpings universitet, Tekniska fakulteten. Univ Antwerp, Belgium.
Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Industriell miljöteknik. Linköpings universitet, Tekniska fakulteten.
Lappeenranta Univ Technol, Finland.
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: Waste Management, ISSN 0956-053X, E-ISSN 1879-2456, Vol. 95, s. 674-686Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Landfill mining (LFM) is a strategy to mitigate environmental impacts associated with landfills, while simultaneously recovering dormant materials, energy carriers, and land resources. Although several case study assessments on the economy of LFM exist, a broader understanding of the driving factors is still lacking. This study aims at identifying generically important factors for the economy of LFM in Europe and understanding their role in developing economically feasible projects in view of different site, project and system-level conditions. Therefore, a set-based modeling approach is used to establish a large number (531,441) of LFM scenarios, evaluate their economic performance in terms of net present value (NPV), and analyze the relationships between input factors and economic outcome via global sensitivity analysis. The scenario results range from -139 Euro to +127 Euro/Mg of excavated waste, with 80% of the scenarios having negative NPVs. Variations in the costs for waste treatment and disposal and the avoided cost of alternative landfill management (i.e. if the landfill was not mined) have the strongest effect on the scenario NPVs, which illustrates the critical role of system level factors for LFM economy and the potential of policy intervention to incentivize LFM. Consequently, system conditions should guide site selection and project development, which is exemplified in the study for two extreme regional archetypes in terms of income and waste management standard. Future work should further explore the developed model to provide decision support on LFM strategies in consideration of alternative purposes, stakeholders, and objectives. (C) 2019 Elsevier Ltd. All rights reserved.

Ort, förlag, år, upplaga, sidor
PERGAMON-ELSEVIER SCIENCE LTD , 2019. Vol. 95, s. 674-686
Nyckelord [en]
Scenario analysis; Economic analysis; Global sensitivity analysis; Waste recovery; Landfill management; Landfill mining
Nationell ämneskategori
Miljöledning
Identifikatorer
URN: urn:nbn:se:liu:diva-162773DOI: 10.1016/j.wasman.2019.07.007ISI: 000499920700065PubMedID: 31351655OAI: oai:DiVA.org:liu-162773DiVA, id: diva2:1379752
Anmärkning

Funding Agencies|European Cooperation for Science and Technology - Mining the European Anthroposphere (COST-Action MINEA) [CA15115]; Christian Doppler Laboratory for Anthropogenic Resources; European Training Network for Resource Recovery Through Enhanced Landfill Mining (NEW-MINE) [721185]

Tillgänglig från: 2019-12-17 Skapad: 2019-12-17 Senast uppdaterad: 2020-04-29
Ingår i avhandling
1. Economics of Landfill Mining: Usefulness and Validity of Different Assessment Approaches
Öppna denna publikation i ny flik eller fönster >>Economics of Landfill Mining: Usefulness and Validity of Different Assessment Approaches
2020 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Landfill mining (LFM) is an alternative strategy to manage landfills that integrates remediation with secondary resource recovery. At present, LFM remains as an emerging concept with a few pilot-scale project implementations, which presents challenges when assessing its economic performance. These challenges include large knowledge deficits about the individual processes along the LFM process chain, lack of know-how in terms of project implementation and economic drivers, and limited applicability of results to specific case studies. Based on how these challenges were addressed, this thesis aims to analyze the usefulness and validity of different economic assessments of LFM towards the provision of better support for decision-making and in-depth learning for the development of cost-efficient projects. Different studies were analyzed including the previous studies through a systematic literature review and the factor-based method that is developed in this thesis. Four categories of economic assessment approaches were derived in terms of the study object that is about either an individual LFM project (case-study specific) or multiple LFM projects in a region (generic); and in terms of the extent of analysis that is about either the identification of the net economic potential (decision-oriented) or extended towards an in-depth learning of what builds up such result (learning-oriented). Across the different approaches, most of the previous studies have questionable usefulness and validity. The unaddressed parametric uncertainties exclude the influence of using inherently uncertain input data due to large knowledge deficits. While the narrowly accounted scenario uncertainties limits the fact that LFM can be done in various ways and settings in terms of site selection, project set-up and regulatory and market conditions. In essence, these uncertainties propagate from case-study specific to generic study object. From decision-oriented to learning-oriented studies, the identification of what builds up the result are unsystematically determined that raises issues on their subsequent recommendations for improvement based on superficially derived economic drivers. The factor-based method, with exploratory scenario development and global sensitivity analysis, is presented as an approach to performing generic and learning-oriented studies. As for general recommendations, applied research is needed to aid large knowledge deficits, methodological rigor is needed to account for uncertainties and systematically identify economic drivers, and learningoriented assessment is needed to facilitate future development of LFM. This thesis highlights the important role of economic assessments, which is not only limited for the assessment of economic potential but also for learning and guiding the development of emerging concepts such as LFM.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2020. s. 86
Serie
Linköping Studies in Science and Technology. Licentiate Thesis, ISSN 0280-7971 ; 1876
Nyckelord
Economic assessment, Uncertainty management, Landfill management, Landfill mining
Nationell ämneskategori
Miljöledning
Identifikatorer
urn:nbn:se:liu:diva-165391 (URN)10.3384/lic.diva-165391 (DOI)9789179298524 (ISBN)
Presentation
2020-05-19, Online and Holken, A Building, Campus Valla, Linköping, 10:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
EU, Horisont 2020, 721185
Tillgänglig från: 2020-04-29 Skapad: 2020-04-29 Senast uppdaterad: 2020-04-29Bibliografiskt granskad

Open Access i DiVA

Publikationen är tillgänglig i fulltext från 2021-07-09 14:49
Tillgänglig från 2021-07-09 14:49

Övriga länkar

Förlagets fulltextPubMed

Sök vidare i DiVA

Av författaren/redaktören
Esguerra, John LaurenceKrook, Joakim
Av organisationen
Industriell miljöteknikTekniska fakulteten
I samma tidskrift
Waste Management
Miljöledning

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 7 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf