liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Assessing the Multiple Dimensions of Poverty. Data Mining Approaches to the 2004-14 Health and Demographic Surveillance System in Cuatro Santos, Nicaragua
Uppsala Univ, Sweden.
Asociac Desarrollo Econ and Sostenible El Espino AP, Nicaragua; Nicaraguan Autonomous Natl Univ Leon UNAN Leon, Nicaragua.
Uppsala Univ, Sweden; Pan Amer Hlth Org, Honduras.
Uppsala Univ, Sweden.
Visa övriga samt affilieringar
2020 (Engelska)Ingår i: Frontiers In Public Health, ISSN 2296-2565, FRONTIERS IN PUBLIC HEALTH, Vol. 7, artikel-id 409Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We identified clusters of multiple dimensions of poverty according to the capability approach theory by applying data mining approaches to the Cuatro Santos Health and Demographic Surveillance database, Nicaragua. Four municipalities in northern Nicaragua constitute the Cuatro Santos area, with 25,893 inhabitants in 5,966 households (2014). A local process analyzing poverty-related problems, prioritizing suggested actions, was initiated in 1997 and generated a community action plan 2002-2015. Interventions were school breakfasts, environmental protection, water and sanitation, preventive healthcare, home gardening, microcredit, technical training, university education stipends, and use of the Internet. In 2004, a survey of basic health and demographic information was performed in the whole population, followed by surveillance updates in 2007, 2009, and 2014 linking households and individuals. Information included the house material (floor, walls) and services (water, sanitation, electricity) as well as demographic data (birth, deaths, migration). Data on participation in interventions, food security, household assets, and womens self-rated health were collected in 2014. A K-means algorithm was used to cluster the household data (56 variables) in six clusters. The poverty ranking of household clusters using the unsatisfied basic needs index variables changed when including variables describing basic capabilities. The households in the fairly rich cluster with assets such as motorbikes and computers were described as modern. Those in the fairly poor cluster, having different degrees of food insecurity, were labeled vulnerable. Poor and poorest clusters of households were traditional, e.g., in using horses for transport. Results displayed a society transforming from traditional to modern, where the forerunners were not the richest but educated, had more working members in household, had fewer children, and were food secure. Those lagging were the poor, traditional, and food insecure. The approach may be useful for an improved understanding of poverty and to direct local policy and interventions.

Ort, förlag, år, upplaga, sidor
Frontiers Media S.A., 2020. Vol. 7, artikel-id 409
Nyckelord [en]
multidimensional poverty; capability approach; health and demographic surveillance; data mining; K-means clustering; poverty alleviation
Nationell ämneskategori
Övrig annan samhällsvetenskap
Identifikatorer
URN: urn:nbn:se:liu:diva-164176DOI: 10.3389/fpubh.2019.00409ISI: 000514381800001PubMedID: 32064243Scopus ID: 2-s2.0-85079503449OAI: oai:DiVA.org:liu-164176DiVA, id: diva2:1413996
Anmärkning

Funding Agencies|Uppsala University, Sweden; Centro de Investigacion en Demografia y Salud (CIDS), Universidad Nacional Autonoma de Nicaragua (UNAN)-Leon; Asociacion para el Desarrollo Economico y Sostenible de El Espino (APRODESE); Fundacion Coordinacion de Hermanamientos e Iniciativas de Cooperacion; Swedish Research CouncilSwedish Research Council

Tillgänglig från: 2020-03-11 Skapad: 2020-03-11 Senast uppdaterad: 2020-04-02Bibliografiskt granskad

Open Access i DiVA

fulltext(520 kB)14 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 520 kBChecksumma SHA-512
a29bc70bccea095203187a0f3c73a0b2636d1016f08d395553c8f1979b3b50a96a5de93ad047e8f6fb694ae7ac1bcb331cb68e26782aa75a1b048b5313f26821
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Sök vidare i DiVA

Av författaren/redaktören
Sysoev, Oleg
Av organisationen
Statistik och maskininlärningFilosofiska fakulteten
I samma tidskrift
Frontiers In Public Health
Övrig annan samhällsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 14 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 29 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf