liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Centralized and Distributed Power Allocation for Max-Min Fairness in Cell-Free Massive MIMO
Linköpings universitet, Institutionen för systemteknik, Kommunikationssystem. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för systemteknik, Kommunikationssystem. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0002-5954-434X
Univ Pisa, Italy.
2019 (Engelska)Ingår i: CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, IEEE , 2019, s. 576-580Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Cell-free Massive MIMO systems consist of a large number of geographically distributed access points (APs) that serve users by coherent joint transmission. Downlink power allocation is important in these systems, to determine which APs should transmit to which users and with what power. If the system is implemented correctly, it can deliver a more uniform user performance than conventional cellular networks. To this end, previous works have shown how to perform system-wide max-min fairness power allocation when using maximum ratio precoding. In this paper, we first generalize this method to arbitrary precoding, and then train a neural network to perform approximately the same power allocation but with reduced computational complexity. Finally, we train one neural network per AP to mimic system-wide max-min fairness power allocation, but using only local information. By learning the structure of the local propagation environment, this method outperforms the state-of-the-art distributed power allocation method from the Cell-free Massive MIMO literature.

Ort, förlag, år, upplaga, sidor
IEEE , 2019. s. 576-580
Serie
Conference Record of the Asilomar Conference on Signals Systems and Computers, ISSN 1058-6393
Nyckelord [en]
Cell-free Massive MIMO; Power allocation; Max-min fairness; Deep learning; Scalability
Nationell ämneskategori
Kommunikationssystem
Identifikatorer
URN: urn:nbn:se:liu:diva-168230DOI: 10.1109/IEEECONF44664.2019.9048903ISI: 000544249200112ISBN: 978-1-7281-4300-2 (digital)OAI: oai:DiVA.org:liu-168230DiVA, id: diva2:1459394
Konferens
53rd Asilomar Conference on Signals, Systems, and Computers
Anmärkning

Funding Agencies|Wallenberg AI, Autonomous Systems and Software Program (WASP) - Knut and Alice Wallenberg Foundation

Tillgänglig från: 2020-08-19 Skapad: 2020-08-19 Senast uppdaterad: 2020-08-19

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Sök vidare i DiVA

Av författaren/redaktören
Chakraborty, SucharitaBjörnson, Emil
Av organisationen
KommunikationssystemTekniska fakulteten
Kommunikationssystem

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 69 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf