liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A numerical solution of a Cauchy problem for an elliptic equation by Krylov subspaces
Linköpings universitet, Matematiska institutionen, Beräkningsvetenskap. Linköpings universitet, Tekniska högskolan.ORCID-id: 0000-0003-2281-856X
University of Bologna.
2009 (Engelska)Ingår i: INVERSE PROBLEMS, ISSN 0266-5611 , Vol. 25, nr 6, s. 065002-Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We study the numerical solution of a Cauchy problem for a self-adjoint elliptic partial differential equation u(zz) - L-u = 0 in three space dimensions (x, y, z), where the domain is cylindrical in z. Cauchy data are given on the lower boundary and the boundary values on the upper boundary are sought. The problem is severely ill-posed. The formal solution is written as a hyperbolic cosine function in terms of the two-dimensional elliptic operator L (via its eigenfunction expansion), and it is shown that the solution is stabilized (regularized) if the large eigenvalues are cut off. We suggest a numerical procedure based on the rational Krylov method, where the solution is projected onto a subspace generated using the operator L-1. This means that in each Krylov step, a well-posed two-dimensional elliptic problem involving L is solved. Furthermore, the hyperbolic cosine is evaluated explicitly only for a small symmetric matrix. A stopping criterion for the Krylov recursion is suggested based on the relative change of an approximate residual, which can be computed very cheaply. Two numerical examples are given that demonstrate the accuracy of the method and the efficiency of the stopping criterion.

Ort, förlag, år, upplaga, sidor
2009. Vol. 25, nr 6, s. 065002-
Nationell ämneskategori
Matematik
Identifikatorer
URN: urn:nbn:se:liu:diva-18557DOI: 10.1088/0266-5611/25/6/065002OAI: oai:DiVA.org:liu-18557DiVA, id: diva2:220589
Anmärkning
Original Publication: Lars Eldén and Valeria Simoncini, A numerical solution of a Cauchy problem for an elliptic equation by Krylov subspaces, 2009, INVERSE PROBLEMS, (25), 6, 065002. http://dx.doi.org/10.1088/0266-5611/25/6/065002 Copyright: Iop Publishing Ltd http://www.iop.org/ Tillgänglig från: 2009-06-10 Skapad: 2009-06-01 Senast uppdaterad: 2013-08-30Bibliografiskt granskad

Open Access i DiVA

fulltext(3119 kB)725 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 3119 kBChecksumma SHA-512
b9fc32ea550eb69b8cc69c5344af038060a3ae9bb83ca085b94056cba41aaed957e11a6c99db46fe72b132f4983b2aa1f597bed252aca1e706f9bb34b12ec95e
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Personposter BETA

Eldén, Lars

Sök vidare i DiVA

Av författaren/redaktören
Eldén, Lars
Av organisationen
BeräkningsvetenskapTekniska högskolan
Matematik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 725 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 594 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf