liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Three-dimensional flow characterization using vector pattern matching
Linköpings universitet, Institutionen för medicin och vård, Klinisk fysiologi. Linköpings universitet, Hälsouniversitetet.
Linköpings universitet, Institutionen för medicin och vård, Klinisk fysiologi. Linköpings universitet, Hälsouniversitetet.ORCID-id: 0000-0003-1395-8296
Linköpings universitet, Institutionen för medicin och vård, Klinisk fysiologi. Linköpings universitet, Hälsouniversitetet.
Linköpings universitet, Institutionen för medicinsk teknik, Fysiologisk mätteknik. Linköpings universitet, Tekniska högskolan.ORCID-id: 0000-0001-5526-2399
2003 (Engelska)Ingår i: IEEE Transactions on Visualization and Computer Graphics, ISSN 1077-2626, E-ISSN 1941-0506, Vol. 9, nr 3, s. 313-319Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This paper describes a novel method for regional characterization of three-dimensional vector fields using a pattern matching approach. Given a three-dimensional vector field, the goal is to automatically locate, identify, and visualize a selected set of classes of structures or features. Rather than analytically defining the properties that must be fulfilled in a region in order to be classified as a specific structure, a set of idealized patterns for each structure type is constructed. Similarity to these patterns is then defined and calculated. Examples of structures of interest include vortices, swirling flow, diverging or converging flow, and parallel flow. Both medical and aerodynamic applications are presented in this paper.

Ort, förlag, år, upplaga, sidor
2003. Vol. 9, nr 3, s. 313-319
Nationell ämneskategori
Medicin och hälsovetenskap
Identifikatorer
URN: urn:nbn:se:liu:diva-26709DOI: 10.1109/TVCG.2003.1207439Lokalt ID: 11302OAI: oai:DiVA.org:liu-26709DiVA, id: diva2:247259
Tillgänglig från: 2009-10-08 Skapad: 2009-10-08 Senast uppdaterad: 2017-12-13
Ingår i avhandling
1. Automated feature detection in multidimensional images
Öppna denna publikation i ny flik eller fönster >>Automated feature detection in multidimensional images
2005 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Manual identification of structures and features in multidimensional images is at best time consuming and operator dependent. Feature identification need to be accurate, repeatable and quantitative.

This thesis presents novel methods for automated feature detection in multidimensional images that are independent on imaging modality. Feature detection is described at two abstraction levels. At the first low level the image is regionally processed to find local or regional features. In the second medium level results are taken from the low level feature detection and grouped into objects or parts that can be quantified. A key to quantification of cardiac function is delineation of the cardiac walls which is a difficult task. Two different methods are described and evaluated for delineation of the left ventricular wall from anatomical images. The results show that semi-automatic delineation is a huge time saver compared to manual delineation. To obtain a robust results as much a priori and image information as possible should be used in the delineation process. Regional cardiac wall function is further studied by deriving and analyzing strain-rate tensors from velocity encoded images. For flow encoded images novel methods to find regional flow structures such as vortex cores, flow based delineation, and flow quantification are proposed. These methods are applied to study blood flow in the human heart, but the techniques outlined are general and can be applied to a wide array of flow conditions.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2005. s. 70
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 917
Nationell ämneskategori
Medicin och hälsovetenskap
Identifikatorer
urn:nbn:se:liu:diva-29497 (URN)14852 (Lokalt ID)91-85297-10-0 (ISBN)14852 (Arkivnummer)14852 (OAI)
Disputation
2005-04-15, Elsa Brändströmsalen, Campus US, Linköpings Universitet, Linköping, 13:00 (Engelska)
Opponent
Tillgänglig från: 2009-10-09 Skapad: 2009-10-09 Senast uppdaterad: 2012-12-10Bibliografiskt granskad
2. Automated feature detection in multidimensional images: a unified tensor approach
Öppna denna publikation i ny flik eller fönster >>Automated feature detection in multidimensional images: a unified tensor approach
2001 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Manual identification of structures and features in multidimensional images is at best time consuming and operator dependent. Feature identification need to be accurate, repeatable and quantitative. This thesis presents a unified approach for automatic feature detection in multidimensional scalar and vector fields. The basis for the feature detection is a tensor representation of multidimensional local neighborhoods, constructed from a filter response controlled linear combination of basis tensors. Using eigenvalue and eigenvector decomposition, local topology and local orientation can be estimated. With different filter sets the tensor representation can be used to find specific features in multidimensional images, such as planar structures in scalar fields or flow structures as vortices or parallel flow in vector fields.

The motivation for the unified approach for feature detection in both scalar and vector fields is to build a foundation to tackle the challenge of understanding the complex interaction between the cardiac walls and the blood flow in the human heart.

Ort, förlag, år, upplaga, sidor
Linköping: Linköpings universitet, 2001. s. 42
Serie
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 909
Nationell ämneskategori
Medicin och hälsovetenskap
Identifikatorer
urn:nbn:se:liu:diva-33625 (URN)LiU-TEK-LIC-2001:46 (Lokalt ID)91-7373-131-5 (ISBN)LiU-TEK-LIC-2001:46 (Arkivnummer)LiU-TEK-LIC-2001:46 (OAI)
Presentation
2001-11-30, Terassen, Universitetssjukhuset, Linköping, 10:15 (Svenska)
Opponent
Tillgänglig från: 2009-10-09 Skapad: 2009-10-09 Senast uppdaterad: 2013-11-07Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Heiberg, EinarEbbers, TinoWigström, LarsKarlsson, Matts

Sök vidare i DiVA

Av författaren/redaktören
Heiberg, EinarEbbers, TinoWigström, LarsKarlsson, Matts
Av organisationen
Klinisk fysiologiHälsouniversitetetFysiologisk mätteknikTekniska högskolan
I samma tidskrift
IEEE Transactions on Visualization and Computer Graphics
Medicin och hälsovetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 714 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf