liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Uncertainty in water quality data and its implications for trend detection: lessons from Swedish environmental data
Linköpings universitet, Institutionen för datavetenskap, Statistik. Linköpings universitet, Filosofiska fakulteten.
Linköpings universitet, Institutionen för datavetenskap, Statistik. Linköpings universitet, Filosofiska fakulteten.
2008 (Engelska)Ingår i: Environmental Science and Policy, ISSN 1462-9011, E-ISSN 1873-6416, Vol. 11, nr 2, s. 115-124Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The demands on monitoring systems have gradually increased, and interpretation of the data is often a matter of controversy. As an example of this, we investigated water quality monitoring and the eutrophication issue in Sweden. Our results demonstrate that powerful statistical tools for trend analysis can reveal flaws in the data and lead to new and revised interpretations of environmental data. In particular, we found strong evidence that long-term trends in measured nutrient concentrations can be more extensively influenced by changes in sampling and laboratory practices than by actual changes in the state of the environment. On a more general level, our findings raise important questions regarding the need for new paradigms for environmental monitoring and assessment. Introduction of a system in which conventional quality assurance is complemented with thorough statistical follow-up of reported values would represent a first step towards recognizing that environmental monitoring and assessment should be transformed from being a system for sampling and laboratory analyses into a system for interpreting information to support policy development.

Ort, förlag, år, upplaga, sidor
2008. Vol. 11, nr 2, s. 115-124
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:liu:diva-44473DOI: 10.1016/j.envsci.2007.12.001Lokalt ID: 76781OAI: oai:DiVA.org:liu-44473DiVA, id: diva2:265335
Tillgänglig från: 2009-10-10 Skapad: 2009-10-10 Senast uppdaterad: 2018-01-12Bibliografiskt granskad
Ingår i avhandling
1. Roadmap for trend detection and assessment of data quality
Öppna denna publikation i ny flik eller fönster >>Roadmap for trend detection and assessment of data quality
2008 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Regular measurements of the state of the environment constitute a cornerstone of environmental management. Without the support of long time series of reliable data, we would know much less about changes that occur in the environment and their causes. The present research aimed to explore how improved techniques for data analysis can help reveal flawed data and extract more information from environmental monitoring programmes. Based on our results, we propose that the organization of such monitoring should be transformed from a system for measuring and collecting data to an information system where resources have been reallocated to data analysis. More specifically, this thesis reports improved methods for joint analysis of trends in multiple time series and detection of artificial level shifts in the presence of smooth trends. Furthermore, special consideration is given to methods that automatically detect and adapt to the interdependence of the collected data. The current work resulted in a roadmap describing the process of proceeding from a set of observed concentrations to arrive at conclusions about the quality of the data and existence of trends therein. Improvements in existing software accompanied the development of new statistical procedures.

Ort, förlag, år, upplaga, sidor
Linköping: Linköpings universitet, 2008. s. 81 + papers 1-5
Serie
Linköping Studies in Statistics, ISSN 1651-1700 ; 10Linköping Studies in Arts and Science, ISSN 0282-9800 ; 454
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
urn:nbn:se:liu:diva-43109 (URN)71719 (Lokalt ID)978-91-7393-792-4 (ISBN)71719 (Arkivnummer)71719 (OAI)
Disputation
2008-10-10, Alan Turing, Hus E, Campus Valla, Linköpings universitet, Linköping, 13:15 (Engelska)
Handledare
Tillgänglig från: 2009-10-10 Skapad: 2009-10-10 Senast uppdaterad: 2018-01-12Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextLink to Ph.D. Thesis

Person

Wahlin, KarlGrimvall, Anders

Sök vidare i DiVA

Av författaren/redaktören
Wahlin, KarlGrimvall, Anders
Av organisationen
StatistikFilosofiska fakulteten
I samma tidskrift
Environmental Science and Policy
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 254 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf