liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Adaptive eigenvalue computations using Newton's method on the Grassmann manifold
Linköpings universitet, Tekniska högskolan. Linköpings universitet, Matematiska institutionen, Beräkningsvetenskap.ORCID-id: 0000-0003-2281-856X
2002 (Engelska)Ingår i: SIAM Journal on Matrix Analysis and Applications, ISSN 0895-4798, E-ISSN 1095-7162, Vol. 23, nr 3, s. 819-839Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We consider the problem of updating an invariant subspace of a large and structured Hermitian matrix when the matrix is modified slightly. The problem can be formulated as that of computing stationary values of a certain function with orthogonality constraints. The constraint is formulated as the requirement that the solution must be on the Grassmann manifold, and Newton's method on the manifold is used. In each Newton iteration a Sylvester equation is to be solved. We discuss the properties of the Sylvester equation and conclude that for large problems preconditioned iterative methods can be used. Preconditioning techniques are discussed. Numerical examples from signal subspace computations are given in which the matrix is Toeplitz and we compute a partial singular value decomposition corresponding to the largest singular values. Further we solve numerically the problem of computing the smallest eigenvalues and corresponding eigenvectors of a large sparse matrix that has been slightly modified.

Ort, förlag, år, upplaga, sidor
2002. Vol. 23, nr 3, s. 819-839
Nyckelord [en]
Conjugate gradient method, Differential geometry, Eigenvalue, Eigenvector, Grassmann manifold, Newton's method, Preconditioner, Signal subspace problem, Singular values and vectors, Sparse matrix, Toeplitz matrix
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
URN: urn:nbn:se:liu:diva-47142DOI: 10.1137/S0895479899354688OAI: oai:DiVA.org:liu-47142DiVA, id: diva2:268038
Tillgänglig från: 2009-10-11 Skapad: 2009-10-11 Senast uppdaterad: 2017-12-13

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Person

Elden, Lars

Sök vidare i DiVA

Av författaren/redaktören
Elden, Lars
Av organisationen
Tekniska högskolanBeräkningsvetenskap
I samma tidskrift
SIAM Journal on Matrix Analysis and Applications
Teknik och teknologier

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 392 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf