liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Spectrum Sensing of Orthogonal Space-Time Block Coded Signals with Multiple Receive Antennas
Linköpings universitet, Institutionen för systemteknik, Kommunikationssystem. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för systemteknik, Kommunikationssystem. Linköpings universitet, Tekniska högskolan.ORCID-id: 0000-0002-7599-4367
2010 (Engelska)Ingår i: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Institute of Electrical and Electronics Engineers (IEEE), 2010, s. 3110-3113Konferensbidrag, Publicerat paper (Övrigt vetenskapligt)
Abstract [en]

We consider detection of signals encoded with orthogonal space-time block codes (OSTBC), using multiple receive antennas. Such signals contain redundancy and they have a specific structure, that can be exploited for detection. We derive the optimal detector, in the Neyman-Pearson sense, when all parameters are known. We also consider unknown noise variance, signal variance and channel coefficients. We propose a number of GLRT based detectors for the different cases, that exploit the redundancy structure of the OSTBC signal. We also propose an eigenvalue-based detector for the case when all parameters are unknown. The proposed detectors are compared to the energy detector. We show that when only the noise variance is known, there is no gain in exploiting the structure of the OSTBC. However, when the noise variance is unknown there can be a significant gain.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2010. s. 3110-3113
Serie
Acoustics Speech and Signal Processing (ICASSP), ISSN 1520-6149, E-ISSN 2379-190X
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
URN: urn:nbn:se:liu:diva-51745DOI: 10.1109/ICASSP.2010.5496088ISI: 000287096003014ISBN: 9781424442959 (tryckt)ISBN: 9781424442966 (tryckt)OAI: oai:DiVA.org:liu-51745DiVA, id: diva2:277283
Konferens
IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), 2010, 14-19 March, Dallas, Texas, U.S.A.
Anmärkning

©2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.: Erik Axell and Erik G. Larsson, Spectrum Sensing of Orthogonal Space-Time Block Coded Signals with Multiple Receive Antennas, 2010, Proceedings of the 35th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'10).

The previous status of this articel was Manuscript.

Tillgänglig från: 2009-11-17 Skapad: 2009-11-17 Senast uppdaterad: 2018-02-02Bibliografiskt granskad
Ingår i avhandling
1. Topics in Spectrum Sensing for Cognitive Radio
Öppna denna publikation i ny flik eller fönster >>Topics in Spectrum Sensing for Cognitive Radio
2009 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Cognitive radio is a new concept of reusing licensed spectrum in an unlicensed manner. Cognitive radio is motivated by recent measurements of spectrum utilization, showing unused resources in frequency, time and space. The spectrum must be sensed to detect primary user signals, in order to allow cognitive radios in a primary system. In this thesis we study some topics in spectrum sensing for cognitive radio.

The fundamental problem of spectrum sensing is to discriminate samples that contain only noise from samples that contain a very weak signal embedded in noise. We derive detectors that exploit known structures of the signal, for the cases of an OFDM modulated signal and an orthogonal space-time block coded signal. We derive optimal detectors, in the Neyman-Pearson sense, for a few different cases when all parameters are known. Moreover we study detection when the parameters, such as noise variance, are unknown. We propose solutions the problem of unknown parameters.

We also study system aspects of cognitive radio. More specifically, we investigate spectrum reuse of geographical spectrum holes in a frequency planned primary network. System performance is measured in terms of the achievable rate for the cognitive radio system. Simulation results show that a substantial sum-rate could be achieved if the cognitive radios communicate over small distances. However, the spectrum hole gets saturated quite fast, due to interference caused by the cognitive radios.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2009. s. 21
Serie
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1417
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
urn:nbn:se:liu:diva-51748 (URN)978-91-7393-523-4 (ISBN)
Presentation
2009-12-21, Glashuset, Campus Valla, Linköpings universitet, Linköping, 13:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2009-11-20 Skapad: 2009-11-17 Senast uppdaterad: 2017-01-13Bibliografiskt granskad
2. Spectrum Sensing Algorithms Based on Second-Order Statistics
Öppna denna publikation i ny flik eller fönster >>Spectrum Sensing Algorithms Based on Second-Order Statistics
2012 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Cognitive radio is a new concept of reusing spectrum in an opportunistic manner. Cognitive radio is motivated by recent measurements of spectrum utilization, showing unused resources in frequency, time and space. Introducing cognitive radios in a primary network inevitably creates increased interference to the primary users. Secondary users must sense the spectrum and detect primary users' signals at very low SNR, to avoid causing too much interference.This dissertation studies this detection problem, known as spectrum sensing.

The fundamental problem of spectrum sensing is to discriminate an observation that contains only noise from an observation that contains a very weak signal embedded in noise. In this work, detectors are derived that exploit known properties of the second-order moments of the signal. In particular, known structures of the signal covariance are exploited to circumvent the problem of unknown parameters, such as noise and signal powers or channel coefficients.

The dissertation is comprised of six papers, all in different ways related to spectrum sensing based on second-order statistics. In the first paper, we considerspectrum sensing of orthogonal frequency-division multiplexed (OFDM) signals in an additive white Gaussian noise channel. For the case of completely known noise and signal powers, we set up a vector-matrix model for an OFDM signal with a cyclic prefix and derive the optimal Neyman-Pearson detector from first principles. For the case of completely unknown noise and signal powers, we derive a generalized likelihood ratio test (GLRT) based on empirical second-order statistics of the received data. The proposed GLRT detector exploits the non-stationary correlation structure of the OFDM signal and does not require any knowledge of the noise or signal powers.

In the second paper, we create a unified framework for spectrum sensing of signals which have covariance matrices with known eigenvalue multiplicities. We derive the GLRT for this problem, with arbitrary eigenvalue multiplicities under both hypotheses. We also show a number of applications to spectrum sensing for cognitive radio.

The general result of the second paper is used as a building block, in the third and fourth papers, for spectrum sensing of second-order cyclostationary signals received at multiple antennas and orthogonal space-time block coded (OSTBC) signals respectively. The proposed detector of the third paper exploits both the spatial and the temporal correlation of the received signal, from knowledge of the fundamental period of the cyclostationary signal and the eigenvalue multiplicities of the temporal covariance matrix.

In the fourth paper, we consider spectrum sensing of signals encoded with an OSTBC. We show how knowledge of the eigenvalue multiplicities of the covariance matrix are inherent owing to the OSTBC, and propose an algorithm that exploits that knowledge for detection. We also derive theoretical bounds on the performance of the proposed detector. In addition, we show that the proposed detector is robust to a carrier frequency offset, and propose another detector that deals with timing synchronization using the detector for the synchronized case as a building block.

A slightly different approach to covariance matrix estmation is taken in the fifth paper. We consider spectrum sensing of Gaussian signals with structured covariance matrices, and propose to estimate the unknown parameters of the covariance matrices using covariance matching estimation techniques (COMET). We also derive the optimal detector based on a Gaussian approximation of the sample covariance matrix, and show that this is closely connected to COMET.

The last paper deals with the problem of discriminating samples that containonly noise from samples that contain a signal embedded in noise, when the variance of the noise is unknown. We derive the optimal soft decision detector using a Bayesian approach. The complexity of this optimal detector grows exponentially with the number of observations and as a remedy, we propose a number of approximations to it. The problem under study is a fundamental one andit has applications in signal denoising, anomaly detection, and spectrum sensing for cognitive radio.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2012. s. 37
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1457
Nationell ämneskategori
Kommunikationssystem
Identifikatorer
urn:nbn:se:liu:diva-78948 (URN)978-91-7519-876-7 (ISBN)
Disputation
2012-09-14, Visionen, Hus B, Campus Valla, Linköpings universitet, Linköping, 13:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2012-06-27 Skapad: 2012-06-26 Senast uppdaterad: 2019-12-08Bibliografiskt granskad

Open Access i DiVA

fulltext(244 kB)787 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 244 kBChecksumma SHA-512
baf565ebf7ef62c253fa22857473c672699f0fab2068b68a27d4f1b5a40babe55a34951e0f2c074cf96eeb975c93c90a368fbba8db49a7b1f06eea248472b29e
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Personposter BETA

Axell, ErikLarsson, Erik G.

Sök vidare i DiVA

Av författaren/redaktören
Axell, ErikLarsson, Erik G.
Av organisationen
KommunikationssystemTekniska högskolan
Teknik och teknologier

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 787 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 1760 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf