liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Estimating artificial level shifts in the presence of smooth trends
Linköpings universitet, Institutionen för datavetenskap, Statistik. Linköpings universitet, Filosofiska fakulteten.
Linköpings universitet, Institutionen för datavetenskap, Statistik. Linköpings universitet, Filosofiska fakulteten.
Department of Mathematics, National University of Laos, Vientiane, Laos.
2008 (Engelska)Ingår i: Environmental Monitoring and Assessment, ISSN 0167-6369Artikel i tidskrift (Övrigt vetenskapligt) Submitted
Abstract [en]

Changes in observational data over time can be severely distorted by errors in measurements, sampling, or reporting. Here, we show how smooth trends in vector time series can be separated from one or two abrupt level shifts that occur simultaneously in all coordinates. Trends are modelled nonparametrically, whereas abrupt changes and the impact of covariates are modelled parametrically. The model is estimated using a backfitting algorithm in which estimation of smooth trends is alternated with estimation of regression coefficients for covariates and assessment of sudden level shifts. The proposed method is adaptive in the sense that the degree of smoothing over time and across coordinates is controlled by a roughness penalty and cross-validation procedure that automatically identifies the interdependence of the analysed data. Furthermore, it uses a resampling technique that can accommodate correlated error terms in the assessment of the uncertainty of both smooth trends and discontinuities. The method is applied to water quality data from Swedish national monitoring programmes to illustrate how known discontinuities can be quantified and how previously unrecognized discontinuities can be detected.

Ort, förlag, år, upplaga, sidor
2008.
Nationell ämneskategori
Samhällsvetenskap
Identifikatorer
URN: urn:nbn:se:liu:diva-52245OAI: oai:DiVA.org:liu-52245DiVA, id: diva2:280807
Tillgänglig från: 2009-12-11 Skapad: 2009-12-11 Senast uppdaterad: 2011-05-20Bibliografiskt granskad
Ingår i avhandling
1. Roadmap for trend detection and assessment of data quality
Öppna denna publikation i ny flik eller fönster >>Roadmap for trend detection and assessment of data quality
2008 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Regular measurements of the state of the environment constitute a cornerstone of environmental management. Without the support of long time series of reliable data, we would know much less about changes that occur in the environment and their causes. The present research aimed to explore how improved techniques for data analysis can help reveal flawed data and extract more information from environmental monitoring programmes. Based on our results, we propose that the organization of such monitoring should be transformed from a system for measuring and collecting data to an information system where resources have been reallocated to data analysis. More specifically, this thesis reports improved methods for joint analysis of trends in multiple time series and detection of artificial level shifts in the presence of smooth trends. Furthermore, special consideration is given to methods that automatically detect and adapt to the interdependence of the collected data. The current work resulted in a roadmap describing the process of proceeding from a set of observed concentrations to arrive at conclusions about the quality of the data and existence of trends therein. Improvements in existing software accompanied the development of new statistical procedures.

Ort, förlag, år, upplaga, sidor
Linköping: Linköpings universitet, 2008. s. 81 + papers 1-5
Serie
Linköping Studies in Statistics, ISSN 1651-1700 ; 10Linköping Studies in Arts and Science, ISSN 0282-9800 ; 454
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
urn:nbn:se:liu:diva-43109 (URN)71719 (Lokalt ID)978-91-7393-792-4 (ISBN)71719 (Arkivnummer)71719 (OAI)
Disputation
2008-10-10, Alan Turing, Hus E, Campus Valla, Linköpings universitet, Linköping, 13:15 (Engelska)
Handledare
Tillgänglig från: 2009-10-10 Skapad: 2009-10-10 Senast uppdaterad: 2018-01-12Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Link to Ph.D. Thesis

Person

Wahlin, KarlGrimvall, Anders

Sök vidare i DiVA

Av författaren/redaktören
Wahlin, KarlGrimvall, Anders
Av organisationen
StatistikFilosofiska fakulteten
Samhällsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 1507 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf