liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Visual Analysis of Mixed Data Sets Using Interactive Quantification
Linköpings universitet, Institutionen för teknik och naturvetenskap, Visuell informationsteknologi och applikationer. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för teknik och naturvetenskap, Visuell informationsteknologi och applikationer. Linköpings universitet, Tekniska högskolan.
2009 (Engelska)Ingår i: ACM SIGKDD Explorations Newsletter, ISSN 1931-0145, Vol. 11, nr 2, s. 29-38Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

It is often diffcult to analyse data sets including a combi-nation of categorical and numerical variables (mixed datasets) since there does not exist any similarity measure whichis as straight forward and general as the numerical distancebetween numerical items. Quantication of categorical vari-ables enables analysis using commonly used visual represen-tations and analysis techniques for numerical data. Thispaper presents a tool for exploratory analysis of categoricaland mixed data which uses a quantication process intro-duced in [Johansson2008]. The application enables analysis of mixeddata sets by providing an environment for exploratory anal-ysis using common visual representations in multiple coordi-nated views and algorithmic analysis that facilitates detec-tion of potentially interesting patterns within combinationsof categorical and numerical variables. The generality andusefulness of the quantication process and of the featuresof the application is demonstrated through a case scenariousing a data set from the IEEE VAST 2008 Challenge.

Ort, förlag, år, upplaga, sidor
New York: ACM , 2009. Vol. 11, nr 2, s. 29-38
Nyckelord [en]
Information Visualization, Visual Analysis, Categorical Data, Quantification
Nationell ämneskategori
Mediateknik
Identifikatorer
URN: urn:nbn:se:liu:diva-60142DOI: 10.1145/1809400.1809406OAI: oai:DiVA.org:liu-60142DiVA, id: diva2:355304
Tillgänglig från: 2010-10-06 Skapad: 2010-10-06 Senast uppdaterad: 2011-10-06
Ingår i avhandling
1. Algorithmically Guided Information Visualization: Explorative Approaches for High Dimensional, Mixed and Categorical Data
Öppna denna publikation i ny flik eller fönster >>Algorithmically Guided Information Visualization: Explorative Approaches for High Dimensional, Mixed and Categorical Data
2011 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Algoritmiskt vägledd informationsvisualisering för högdimensionell och kategorisk data
Abstract [en]

Facilitated by the technological advances of the last decades, increasing amounts of complex data are being collected within fields such as biology, chemistry and social sciences. The major challenge today is not to gather data, but to extract useful information and gain insights from it. Information visualization provides methods for visual analysis of complex data but, as the amounts of gathered data increase, the challenges of visual analysis become more complex.

This thesis presents work utilizing algorithmically extracted patterns as guidance during interactive data exploration processes, employing information visualization techniques. It provides efficient analysis by taking advantage of fast pattern identification techniques as well as making use of the domain expertise of the analyst. In particular, the presented research is concerned with the issues of analysing categorical data, where the values are names without any inherent order or distance; mixed data, including a combination of categorical and numerical data; and high dimensional data, including hundreds or even thousands of variables.

The contributions of the thesis include a quantification method, assigning numerical values to categorical data, which utilizes an automated method to define category similarities based on underlying data structures, and integrates relationships within numerical variables into the quantification when dealing with mixed data sets. The quantification is incorporated in an interactive analysis pipeline where it provides suggestions for numerical representations, which may interactively be adjusted by the analyst. The interactive quantification enables exploration using commonly available visualization methods for numerical data. Within the context of categorical data analysis, this thesis also contributes the first user study evaluating the performance of what are currently the two main visualization approaches for categorical data analysis.

Furthermore, this thesis contributes two dimensionality reduction approaches, which aim at preserving structure while reducing dimensionality, and provide flexible and user-controlled dimensionality reduction. Through algorithmic quality metric analysis, where each metric represents a structure of interest, potentially interesting variables are extracted from the high dimensional data. The automatically identified structures are visually displayed, using various visualization methods, and act as guidance in the selection of interesting variable subsets for further analysis. The visual representations furthermore provide overview of structures within the high dimensional data set and may, through this, aid in focusing subsequent analysis, as well as enabling interactive exploration of the full high dimensional data set and selected variable subsets. The thesis also contributes the application of algorithmically guided approaches for high dimensional data exploration in the rapidly growing field of microbiology, through the design and development of a quality-guided interactive system in collaboration with microbiologists.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2011. s. 72
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1400
Nyckelord
Information visualization, data mining, high dimensional data, categorical data, mixed data
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
urn:nbn:se:liu:diva-70860 (URN)978-91-7393-056-7 (ISBN)
Disputation
2011-11-11, Domen, Norrköpings Visualiseringscenter, Kungsgatan 54, 602 33 Norrköping, 09:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2011-10-06 Skapad: 2011-09-20 Senast uppdaterad: 2019-12-19Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Person

Johansson, SaraJohansson, Jimmy

Sök vidare i DiVA

Av författaren/redaktören
Johansson, SaraJohansson, Jimmy
Av organisationen
Visuell informationsteknologi och applikationerTekniska högskolan
Mediateknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 286 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf