liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Comparison of change-point detection algorithms for vector time series
Linköpings universitet, Institutionen för datavetenskap, Statistik.
2010 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 30 poäng / 45 hpStudentuppsats (Examensarbete)
Abstract [en]

Change-point detection aims to reveal sudden changes in sequences of data. Special attention has been paid to the detection of abrupt level shifts, and applications of such techniques can be found in a great variety of fields, such as monitoring of climate change, examination of gene expressions and quality control in the manufacturing industry. In this work, we compared the performance of two methods representing frequentist and Bayesian approaches, respectively. The frequentist approach involved a preliminary search for level shifts using a tree algorithm followed by a dynamic programming algorithm for optimizing the locations and sizes of the level shifts. The Bayesian approach involved an MCMC (Markov chain Monte Carlo) implementation of a method originally proposed by Barry and Hartigan. The two approaches were implemented in R and extensive simulations were carried out to assess both their computational efficiency and ability to detect abrupt level shifts. Our study showed that the overall performance regarding the estimated location and size of change-points was comparable for the Bayesian and frequentist approach. However, the Bayesian approach performed better when the number of change-points was small; whereas the frequentist became stronger when the change-point proportion increased. The latter method was also better at detecting simultaneous change-points in vector time series. Theoretically, the Bayesian approach has a lower computational complexity than the frequentist approach, but suitable settings for the combined tree and dynamic programming can greatly reduce the processing time.

Ort, förlag, år, upplaga, sidor
2010. , s. 42
Nyckelord [en]
change-point detection, time series, tree, dynamic programming, Bayesian, MCMC
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:liu:diva-59925ISRN: LIU-IDA/STAT-A--10/003--SEOAI: oai:DiVA.org:liu-59925DiVA, id: diva2:356285
Presentation
2010-06-07, Alan Turing, E building, Linköping University, Linköping, 09:00 (Engelska)
Uppsök
fysik/kemi/matematik
Handledare
Examinatorer
Tillgänglig från: 2010-11-24 Skapad: 2010-09-30 Senast uppdaterad: 2018-01-12Bibliografiskt granskad

Open Access i DiVA

fulltext(598 kB)172 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 598 kBChecksumma SHA-512
7a01778876396db682666f3cc4eb9038d8e18c735a8b3c55c0479118dd620b7f909bec9b3ddc8ddc8efa263512a8572c0879feb8564009623bddd415c7bfdc3a
Typ fulltextMimetyp application/pdf

Av organisationen
Statistik
Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 172 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 507 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf