liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Bias Reduction in DAE Estimators by Model Augmentation: Observability Analysis and Experimental Evaluation
Linköpings universitet, Institutionen för systemteknik, Fordonssystem. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för systemteknik, Fordonssystem. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för systemteknik, Fordonssystem. Linköpings universitet, Tekniska högskolan.ORCID-id: 0000-0001-8646-8998
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

A method for bias compensation in model based estimation utilizing model augmentation is developed. Based on a default model, that suffers from stationary errors, and measurements from the system a low order augmentation is estimated. The method handles models described by differential algebraic equations and the main contributions are necessary and sufficient conditions for the preservation of the observability properties of the default model during the augmentation.

A characterization of possible augmentations found through the estimation, showing the benefits of adding extra sensors during the design, is included. This enables reduction of estimation errors also in states not used for feedback, which is not possible with for example PI-observers. Beside the estimated augmentation the method handles user provided augmentations, found through e.g. physical knowledge of the system.

The method is evaluated on a nonlinear engine model where its ability to incorporate information from additional sensors during the augmentation estimationis clearly illustrated. By applying the method the mean relative estimation error for the exhaust manifold pressure is reduced by 55 %.

Nationell ämneskategori
Teknik och teknologier
Identifikatorer
URN: urn:nbn:se:liu:diva-67597DOI: 10.1109/CDC.2011.6160697OAI: oai:DiVA.org:liu-67597DiVA, id: diva2:411493
Tillgänglig från: 2011-04-18 Skapad: 2011-04-18 Senast uppdaterad: 2018-01-30Bibliografiskt granskad
Ingår i avhandling
1. Model Error Compensation in ODE and DAE Estimators: with Automotive Engine Applications
Öppna denna publikation i ny flik eller fönster >>Model Error Compensation in ODE and DAE Estimators: with Automotive Engine Applications
2011 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Control and diagnosis of complex systems demand accurate information of the system state to enable efficient control and to detect system malfunction. Physical sensors are expensive and some quantities are hard or even impossible to measure with physical sensors. This has made model-based estimation an attractive alternative.

Model based observers are sensitive to errors in the model and since the model complexity has to be kept low to enable use in real-time applications, the accuracy of the models becomes limited. Further, modeling is difficult and expensive with large efforts on model parametrization, calibration, and validation, and it is desirable to design robust observers based on existing models. An experimental investigation of an engine application shows that the model have stationary errors while the dynamics of the engine is well described by the model equations. This together with frequent appearance of sensor offsets have led to a demand for systematic ways of handling operating point dependent stationary errors, also called biases, in both models and sensors.

Systematic design methods for reducing bias in model based observers are developed. The methods utilize a default model, described by systems of ordinary differential equations (ODE) or differential algebraic equations (DAE), and measurement data. A low order description of the model deficiencies is estimated from the default model and measurement data, which results in an automatic model augmentation. The idea is then to use the augmented model in observer design, yielding reduced stationary estimation errors compared to an observer based on the default model. Three main results are: a characterization of possible model augmentations from observability perspectives, a characterization of augmentations possible to estimate from measurement data, and a robustness analysis with respect to noise and model uncertainty.

An important step is how the bias is modeled, and two ways of describing the bias are analyzed. The first is a random walk and the second is a parameterization of the bias. The latter can be viewed as an extension of the first and utilizes a parameterized function that describes the bias as a function of the operating point of the system. By utilizing a parameterized function, a memory is introduced that enables separate tracking of aging and operating point dependence. This eliminates the trade-off between noise suppression in the parameter convergence and rapid change of the offset in transients. Direct applications for the parameterized bias are online adaptation and offline calibration of maps commonly used in engine control systems.

The methods are evaluated on measurement data from heavy duty diesel engines. A first order model augmentation is found for an ODE of an engine with EGR and VGT. By modeling the bias as a random walk, the estimation error is reduced by 50 % for a certification cycle. By instead letting a parameterized function describe the bias, better estimation accuracy and increased robustness is achieved. For an engine with intake manifold throttle, EGR, and VGT and a corresponding stiff ODE, experiments show that it is computationally beneficial to approximate the fast dynamics with instantaneous relations, transforming the ODE into a DAE. A main advantage is the possibility to use more than 10 times longer step lengths for the DAE based observer, without loss of estimation accuracy. By augmenting the DAE, an observer that achieves a 55 % reduction of the estimation error during a certification cycle is designed.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2011. s. 30
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1366
Nationell ämneskategori
Data- och informationsvetenskap Reglerteknik
Identifikatorer
urn:nbn:se:liu:diva-67117 (URN)978-91-7393-209-7 (ISBN)
Disputation
2011-05-27, Visionen, Hus B, Campus Valla, Linköping, 10:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2011-04-20 Skapad: 2011-03-30 Senast uppdaterad: 2019-12-19Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Höckerdal, ErikFrisk, ErikEriksson, Lars

Sök vidare i DiVA

Av författaren/redaktören
Höckerdal, ErikFrisk, ErikEriksson, Lars
Av organisationen
FordonssystemTekniska högskolan
Teknik och teknologier

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 127 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf