liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Steady Free-Surface Vortical Flows Parallel to the Horizontal Bottom
Linköpings universitet, Matematiska institutionen, Tillämpad matematik. Linköpings universitet, Tekniska högskolan.
Russian Academy of Sciences.
2011 (Engelska)Ingår i: Quarterly Journal of Mechanics and Applied Mathematics, ISSN 0033-5614, E-ISSN 1464-3855, Vol. 64, nr 3, s. 371-399Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Steady, free-surface, vortical flows of an inviscid, incompressible, heavy fluid over a horizontal, rigid bottom are considered. All flows of constant depth are described for any Lipschitz vorticity distribution. It is shown that the values of Bernoullis constant, for which such flows exist, are greater than or equal to some critical value depending on the vorticity. For the critical value, only one flow exists and it is unidirectional. Supercritical flows exist for all values of Bernoullis constant greater than the critical one; every such flow is also unidirectional and its depth is smaller than that of the critical flow. Furthermore, at least one flow other than supercritical does exist for every value of Bernoullis constant greater than the critical one. It is found that for some vorticity distributions, the number of constant depth flows increases unrestrictedly as Bernoullis constant tends to infinity. However, all these flows, except for one or two, have counter-currents; their number depends on Bernoullis constant and increases by at least two every time when this constant becomes greater than a critical value (the above mentioned is the smallest of them), belonging to a sequence defined by the vorticity. A classification of vorticity distributions is presented; it divides all of them into three classes in accordance with the behaviour of some integral of the distribution on the interval [0, 1]. For distributions in the first class, a unidirectional subcritical flow exists for all admissible values of Bernoullis constant. For vorticity distributions belonging to the other two classes such a flow exists only when Bernoullis constant is less than a certain value. If Bernoullis constant is greater than this value, then at least one flow with counter-currents does exist along with the unidirectional supercritical flow. The second and third classes of vorticity distributions are distinguished from one another by the character of the counter-currents. If a distribution is in the second class, then a near-bottom counter-current is always present for sufficiently large values of Bernoullis constant. For distributions in the third class, a near-surface counter-current is always present for such values of the constant. Several examples illustrating the results are considered.

Ort, förlag, år, upplaga, sidor
Oxford University Press (OUP) , 2011. Vol. 64, nr 3, s. 371-399
Nationell ämneskategori
Matematik
Identifikatorer
URN: urn:nbn:se:liu:diva-70337DOI: 10.1093/qjmam/hbr010ISI: 000293915000007OAI: oai:DiVA.org:liu-70337DiVA, id: diva2:438338
Anmärkning
Funding Agencies|Swedish Research Council (VR)||G. S. Magnusons Foundation of the Royal Swedish Academy of Sciences||Linkoping University||Tillgänglig från: 2011-09-02 Skapad: 2011-09-02 Senast uppdaterad: 2017-12-08

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Kozlov, Vladimir

Sök vidare i DiVA

Av författaren/redaktören
Kozlov, Vladimir
Av organisationen
Tillämpad matematikTekniska högskolan
I samma tidskrift
Quarterly Journal of Mechanics and Applied Mathematics
Matematik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 138 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf