liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Research Platform for Embodied Visual Object Recognition
Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.ORCID-id: 0000-0002-5698-5983
2010 (Engelska)Ingår i: Proceedings of SSBA 2010 Symposium on Image Analysis / [ed] Hendriks Luengo and Milan Gavrilovic, 2010, s. 137-140Konferensbidrag, Publicerat paper (Övrigt vetenskapligt)
Abstract [en]

We present in this paper a research platform for development and evaluation of embodied visual object recognition strategies. The platform uses a stereoscopic peripheral-foveal camera system and a fast pan-tilt unit to perform saliency-based visual search. This is combined with a classification framework based on the bag-of-features paradigm with the aim of targeting, classifying and recognising objects. Interaction with the system is done via typed commands and speech synthesis. We also report the current classification performance of the system.

Ort, förlag, år, upplaga, sidor
2010. s. 137-140
Serie
Centre for Image Analysis Report Series, ISSN 1100-6641 ; 34
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
URN: urn:nbn:se:liu:diva-70769OAI: oai:DiVA.org:liu-70769DiVA, id: diva2:441485
Konferens
SSBA 2010, Uppsala, Sweden, 11-12 March 2010
Tillgänglig från: 2011-09-16 Skapad: 2011-09-16 Senast uppdaterad: 2016-11-23Bibliografiskt granskad
Ingår i avhandling
1. Components of Embodied Visual Object Recognition: Object Perception and Learning on a Robotic Platform
Öppna denna publikation i ny flik eller fönster >>Components of Embodied Visual Object Recognition: Object Perception and Learning on a Robotic Platform
2013 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Object recognition is a skill we as humans often take for granted. Due to our formidable object learning, recognition and generalisation skills, it is sometimes hard to see the multitude of obstacles that need to be overcome in order to replicate this skill in an artificial system. Object recognition is also one of the classical areas of computer vision, and many ways of approaching the problem have been proposed. Recently, visually capable robots and autonomous vehicles have increased the focus on embodied recognition systems and active visual search. These applications demand that systems can learn and adapt to their surroundings, and arrive at decisions in a reasonable amount of time, while maintaining high object recognition performance. Active visual search also means that mechanisms for attention and gaze control are integral to the object recognition procedure. This thesis describes work done on the components necessary for creating an embodied recognition system, specifically in the areas of decision uncertainty estimation, object segmentation from multiple cues, adaptation of stereo vision to a specific platform and setting, and the implementation of the system itself. Contributions include the evaluation of methods and measures for predicting the potential uncertainty reduction that can be obtained from additional views of an object, allowing for adaptive target observations. Also, in order to separate a specific object from other parts of a scene, it is often necessary to combine multiple cues such as colour and depth in order to obtain satisfactory results. Therefore, a method for combining these using channel coding has been evaluated. Finally, in order to make use of three-dimensional spatial structure in recognition, a novel stereo vision algorithm extension along with a framework for automatic stereo tuning have also been investigated. All of these components have been tested and evaluated on a purpose-built embodied recognition platform known as Eddie the Embodied.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2013. s. 64
Serie
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1607
Nyckelord
computer vision, object recognition, stereo vision, classification
Nationell ämneskategori
Signalbehandling Datorseende och robotik (autonoma system)
Identifikatorer
urn:nbn:se:liu:diva-93812 (URN)978-91-7519-564-3 (ISBN)
Presentation
2013-08-16, Visionen, Hus B, Campus Valla, Linköpings universitet, Linköping, 13:15 (Engelska)
Opponent
Handledare
Projekt
Embodied Visual Object Recognition
Forskningsfinansiär
Vetenskapsrådet
Tillgänglig från: 2013-07-09 Skapad: 2013-06-10 Senast uppdaterad: 2019-12-08Bibliografiskt granskad
2. Embodied Visual Object Recognition
Öppna denna publikation i ny flik eller fönster >>Embodied Visual Object Recognition
2017 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Förkroppsligad objektigenkänning
Abstract [en]

Object recognition is a skill we as humans often take for granted. Due to our formidable object learning, recognition and generalisation skills, it is sometimes hard to see the multitude of obstacles that need to be overcome in order to replicate this skill in an artificial system. Object recognition is also one of the classical areas of computer vision, and many ways of approaching the problem have been proposed. Recently, visually capable robots and autonomous vehicles have increased the focus on embodied recognition systems and active visual search. These applications demand that systems can learn and adapt to their surroundings, and arrive at decisions in a reasonable amount of time, while maintaining high object recognition performance. This is especially challenging due to the high dimensionality of image data. In cases where end-to-end learning from pixels to output is needed, mechanisms designed to make inputs tractable are often necessary for less computationally capable embodied systems.Active visual search also means that mechanisms for attention and gaze control are integral to the object recognition procedure. Therefore, the way in which attention mechanisms should be introduced into feature extraction and estimation algorithms must be carefully considered when constructing a recognition system.This thesis describes work done on the components necessary for creating an embodied recognition system, specifically in the areas of decision uncertainty estimation, object segmentation from multiple cues, adaptation of stereo vision to a specific platform and setting, problem-specific feature selection, efficient estimator training and attentional modulation in convolutional neural networks. Contributions include the evaluation of methods and measures for predicting the potential uncertainty reduction that can be obtained from additional views of an object, allowing for adaptive target observations. Also, in order to separate a specific object from other parts of a scene, it is often necessary to combine multiple cues such as colour and depth in order to obtain satisfactory results. Therefore, a method for combining these using channel coding has been evaluated. In order to make use of three-dimensional spatial structure in recognition, a novel stereo vision algorithm extension along with a framework for automatic stereo tuning have also been investigated. Feature selection and efficient discriminant sampling for decision tree-based estimators have also been implemented. Finally, attentional multi-layer modulation of convolutional neural networks for recognition in cluttered scenes has been evaluated. Several of these components have been tested and evaluated on a purpose-built embodied recognition platform known as Eddie the Embodied.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2017. s. 89
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1811
Nyckelord
object recognition, machine learning, computer vision
Nationell ämneskategori
Datorseende och robotik (autonoma system)
Identifikatorer
urn:nbn:se:liu:diva-132762 (URN)10.3384/diss.diva-132762 (DOI)9789176856260 (ISBN)
Disputation
2017-01-20, Visionen, B-huset, Campus VAlla, Linköping, 13:00 (Engelska)
Opponent
Handledare
Projekt
Embodied Visual Object RecognitionFaceTrack
Forskningsfinansiär
Vetenskapsrådet, 2008-4509Vinnova, 2013-00439EU, FP7, Sjunde ramprogrammet, 247947Linköpings universitet, LiU-foass
Tillgänglig från: 2016-12-06 Skapad: 2016-11-23 Senast uppdaterad: 2019-10-12Bibliografiskt granskad

Open Access i DiVA

fulltext(2655 kB)166 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 2655 kBChecksumma SHA-512
a5379208794f46b07aba46c368492043f59dd0967990d387e9599f5dd17bd567fcce69a3081a979cb00707b7ac544514e1a342573722a9cd682aa9d95f3f1b9c
Typ fulltextMimetyp application/pdf

Personposter BETA

Wallenberg, MarcusForssén, Per-Erik

Sök vidare i DiVA

Av författaren/redaktören
Wallenberg, MarcusForssén, Per-Erik
Av organisationen
DatorseendeTekniska högskolan
Teknik och teknologier

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 166 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 348 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf