liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Phase Stability and Elasticity of TiAlN
Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska högskolan.
Visa övriga samt affilieringar
2011 (Engelska)Ingår i: Materials, ISSN 1996-1944, E-ISSN 1996-1944, Vol. 4, nr 9, s. 1599-1618Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We review results of recent combined theoretical and experimental studies of Ti1−xAlxN, an archetypical alloy system material for hard-coating applications. Theoretical simulations of lattice parameters, mixing enthalpies, and elastic properties are presented. Calculated phase diagrams at ambient pressure, as well as at pressure of 10 GPa, show a wide miscibility gap and broad region of compositions and temperatures where the spinodal decomposition takes place. The strong dependence of the elastic properties and sound wave anisotropy on the Al-content offers detailed understanding of the spinodal decomposition and age hardening in Ti1−xAlxN alloy films and multilayers. TiAlN/TiN multilayers can further improve the hardness and thermal stability compared to TiAlN since they offer means to influence the kinetics of the favorable spinodal decomposition and suppress the detrimental transformation to w-AlN. Here, we show that a 100 degree improvement in terms of w-AlN suppression can be achieved, which is of importance when the coating is used as a protective coating on metal cutting inserts.

Ort, förlag, år, upplaga, sidor
MDPI , 2011. Vol. 4, nr 9, s. 1599-1618
Nyckelord [en]
hard coatings; spinodal decomposition; ab initio calculations; thermodynamics; multilayer; TiN
Nationell ämneskategori
Bearbetnings-, yt- och fogningsteknik
Identifikatorer
URN: urn:nbn:se:liu:diva-72927DOI: 10.3390/ma4091599ISI: 000298245900006OAI: oai:DiVA.org:liu-72927DiVA, id: diva2:463705
Forskningsfinansiär
Strategic Initiative - Materials Science
Anmärkning

Funding agencies|Swedish Foundation for Strategic Research (SSF) via research center MultiFilms||Swedish Foundation for Strategic Research (SSF) via research center MS2E||Swedish Research Council (VR)||

Tillgänglig från: 2011-12-11 Skapad: 2011-12-11 Senast uppdaterad: 2017-12-08
Ingår i avhandling
1. Theoretical understanding of stability of alloys for hard-coating applications and design
Öppna denna publikation i ny flik eller fönster >>Theoretical understanding of stability of alloys for hard-coating applications and design
2015 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The performance of modern hard coating materials puts high demands on properties such as hardness, thermal stability and oxidation resistance. These properties not only depend on the chemical composition, but also on the structure of the material on a nanoscale. This kind of nanostructuring will change during use and can be both beneficial and detrimental as materials grown under non-equilibrium conditions transforms under heat treatment or pressure into other structures with significantly different properties. This thesis aims to reveal the physics behind the processes of phase stability and transformations and how this can be utilized to improve on the properties of this class of alloys. This has been achieved through the application of various methods of first-principles calculations and analysis of the results on the basis of thermodynamics and electronic structure theory.

Within multicomponent transition metal aluminum nitride alloys (TMAlN) a number of studies have been carried out and presented here on ways of improving high temperature stability and hardness. Most (TMAl)N and TMN prefer a cubic B1 structure while AlN is stable in a hexagonal B4 phase, but for the purposes of hard coatings the metastable cubic B1 AlN phase, isostructural with the TMN phase is desired. It will be shown how the introduction of additional alloying components, such as Cr, into (TiAl)N changes the thermodynamic stability of phases so that new intermediary and metastable phases are formed during decomposition. In the case of such a (CrAl)N phase it is shown to have greater thermodynamic stability in the cubic phase than the pure AlN, resulting in improved high temperature hardness. Also, the importance of treating not just the binodal decomposition through the formation energy relative to end products but also the impact of spinodal decomposition from its second derivative due to the topology of formation energy surfaces is emphasized in the thesis. The impact of pressure on the AlN phase has also been studied through the calculation of a P-T diagram of AlN as part of a (TiAl)N alloy.

During the study of chemical alloying of TM components into AlN the alloying of low concentrations of these TM were treated in great detail. What is generally referred to as the AlN phase in decomposition is not entirely pure and can be expected to contain traces of any alloying components, such as Ti and Cr or whatever other metals may be present. Low concentration alloying of Cr, on the order of 5-10% is also shown to be stable with regard to isostructural decomposition. Detailed analysis of the effect of Ti and Cr impurities in AlN has been carried out along with a systematic search of AlN alloyed with small amounts of other TM components. The impact of these impurities on the electronic structure and thermodynamic properties is analyzed and the general trends will be explained through the occupation of impurity states by d-like electrons.

Theoretical treatment of such impurities is not straightforward however. AlN is an s-p semiconductor with a wide band gap while TM impurities generate states of a d-like nature situated inside the band gap. Such localized impurity states are expected to give rise to magnetic effects due to spin dependent exchange, in addition strong correlation effects might have to be taken into account. For that reason the use of hybrid functionals with orbital corrections according to the mHSE+Vw scheme, developed specifically for this class of materials, has been used and shown to influence the results during calculation of impurities of Ti and Cr.

In nanocomposite multilayered structures, composed of very thin layers of one material sandwiched between slabs of another, such as layers of SiN between TiN or ZrN, the material properties are greatly affected by the interfaces. In addition to the thermodynamic effects and lattice strains of the interfaces one also has to consider the atomic vibrational motion in the interface structure. Hence, dynamical stability of these thin multilayers is of great importance. As part of this thesis, results on the thermodynamic and dynamical stability of both TiN-SiN layers and ZrN-SiN will be presented. It will be shown that due to considerable dynamical instability in the interface structure of monolayered B1 SiN sandwiched between isostructural layers of B1 ZrN along (111) interfaces this structure cannot be expected to grow, instead preferring the stable (001) direction of growth.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2015. s. 73
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1647
Nationell ämneskategori
Fysik Materialteknik
Identifikatorer
urn:nbn:se:liu:diva-115405 (URN)10.3384/diss.diva-115405 (DOI)978-91-7519-112-6 (ISBN)
Disputation
2015-04-10, Planck, Fysikhuset, Campus Valla, Linköping, 13:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2015-03-16 Skapad: 2015-03-16 Senast uppdaterad: 2015-03-16Bibliografiskt granskad

Open Access i DiVA

fulltext(860 kB)323 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 860 kBChecksumma SHA-512
7b40366c913141b06f9052545f5bc05ff277f9a59c97e18bc37a27545557b8a093d71f83cd1a0735ab3c14626fb6ab498deae146057d158ca1c6e4931c3c4f39
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Personposter BETA

Abrikosov, IgorKnutsson, AxelAlling, BjörnTasnádi, FerencLind, HansHultman, LarsOdén, Magnus

Sök vidare i DiVA

Av författaren/redaktören
Abrikosov, IgorKnutsson, AxelAlling, BjörnTasnádi, FerencLind, HansHultman, LarsOdén, Magnus
Av organisationen
Teoretisk FysikTekniska högskolanNanostrukturerade materialTunnfilmsfysik
I samma tidskrift
Materials
Bearbetnings-, yt- och fogningsteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 323 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 1514 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf