liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Adsorption and surface diffusion of silicon growth species in silicon carbide chemical vapour deposition processes studied by quantum-chemical computations
Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.ORCID-id: 0000-0002-7171-5383
Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska högskolan.ORCID-id: 0000-0002-5341-2637
2013 (Engelska)Ingår i: Theoretical Chemistry accounts, ISSN 1432-881X, E-ISSN 1432-2234, Vol. 132, nr 12Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The effect chlorine addition to the gas mixture has on the surface chemistry in the chemical vapour deposition (CVD) process for silicon carbide (SiC) epitaxial layers is studied by quantum-chemical calculations of the adsorption and diffusion of SiH2 and SiCl2 on the (000-1) 4H–SiC surface. SiH2 was found to bind more strongly to the surface than SiCl2 by approximately 100 kJ mol−1 and to have a 50 kJ mol−1 lower energy barrier for diffusion on the fully hydrogen-terminated surface. On a bare SiC surface, without hydrogen termination, the SiCl2 molecule has a somewhat lower energy barrier for diffusion. SiCl2 is found to require a higher activation energy for desorption once chemisorbed, compared to the SiH2 molecule. Gibbs free energy calculations also indicate that the SiC surface may not be fully hydrogen terminated at CVD conditions since missing neighbouring pair of surface hydrogens is found to be a likely type of defect on a hydrogen-terminated SiC surface.

Ort, förlag, år, upplaga, sidor
Springer Verlag (Germany) , 2013. Vol. 132, nr 12
Nyckelord [en]
Quantum-chemical calculations, Density functional theory (DFT), B3LYP, Chemical vapour deposition (CVD), Silicon carbide (SiC), SiCl2, SiH2, Surface reactions, Adsorption, Reaction path, Activation energy, Diffusion, Hydrogen termination
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
URN: urn:nbn:se:liu:diva-100478DOI: 10.1007/s00214-013-1403-3ISI: 000325724400001OAI: oai:DiVA.org:liu-100478DiVA, id: diva2:662977
Tillgänglig från: 2013-11-08 Skapad: 2013-11-08 Senast uppdaterad: 2018-06-19Bibliografiskt granskad
Ingår i avhandling
1. Quantum chemical studies of deposition and catalytic surface reactions
Öppna denna publikation i ny flik eller fönster >>Quantum chemical studies of deposition and catalytic surface reactions
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Quantum chemical calculations have been used to model chemical reactions in epitaxial growth of silicon carbide by chemical vapor deposition (CVD) processes and to study heterogeneous catalytic reactions for methanol synthesis. CVD is a common method to produce high-quality materials and e.g. thin films in the semiconductor industry, and one of the many usages of methanol is as a promising future renewable and sustainable energy carrier. To optimize the chemical processes it is essential to understand the reaction mechanisms. A comprehensive theoretical model for the process is therefore desired in order to be able to explore various variables that are difficult to investigate in situ. In this thesis reaction paths and reaction energies are computed using quantum chemical calculations. The quantum-chemical results can subsequently be used as input for thermodynamic, kinetic and computational fluid dynamics modelling in order to obtain data directly comparable with the experimental observations.

For the CVD process, the effect of halogen addition to the gas mixture is studied by modelling the adsorption and diffusion of SiH2, SiCl2 and SiBr2 on the (0001̅) 4H-SiC surface. SiH2 was found to bind strongest to the surface and SiBr2 binds slightly stronger than the SiCl2 molecule. The diffusion barrier is shown to be lower for SiH2 than for SiBr2 and SiCl2 which have similar barriers. SiBr2 and SiCl2 are found to have similar physisorption energies and bind stronger than the SiH2 molecule. Gibbs free-energy calculations also indicate that the SiC surface is not fully hydrogen terminated at CVD conditions since missing-neighboring pair of surface hydrogens is found to be common. Calculations for the (0001) surface show that SiCl, SiCl2, SiHCl, SiH, and SiH2 likely adsorb on a methylene site, but the processes are thermodynamically less favorable than their reverse reactions. However, the adsorbed products may be stabilized by subsequent surface reactions to form a larger structure. The formation of these larger structures is found to be fast enough to compete with the desorption processes. Also the Gibbs free energies for adsorption of Si atoms, SiX, SiX2, and SiHX where X is F or Br are presented. Adsorption of Si atoms is shown to be the most thermodynamically favorable reaction followed by SiX, SiHX, and SiX2, X being a halide. The results in this study suggest that the major Si contributors in the SiC–CVD process are Si atoms, SiX and SiH.

Methanol can be synthesized from gaseous carbon dioxide and hydrogen using solid metal-metal oxide mixtures acting as heterogeneous catalysts. Since a large surface area of the catalyst enhances the speed of the heterogeneous reaction, the use of nanoparticles (NP) is expected to be advantageous due to the NPs’ large area to surface ratio. The plasma-induced creation of copper NPs is investigated. One important element during particle growth is the charging process where the variation of the work function (W) with particle size is a key quantity, and the variation becomes increasingly pronounced at smaller NP sizes. The work functions are computed for a set of NP charge numbers, sizes and shapes, using copper as a case study. A derived analytical expression for W is shown to give quite accurate estimates provided that the diameter of the NP is larger than about a nanometer and that the NP has relaxed to close to a spherical shape. For smaller sizes W deviates from the approximative expression, and also depends on the charge number. Some consequences of these results for NP charging process are outlined.

Key reaction steps in the methanol synthesis reaction mechanism using a Cu/ZrO2 nanoparticle catalyst is investigated. Two different reaction paths for conversion of CO2 to CO is studied. The two paths result in the same complete reaction 2 CO2 → 2 CO + O2 where ZrO2 (s) acts as a catalyst. The highest activation energies are significantly lower compared to that of the gas phase reaction. The presence of oxygen vacancies at the surface appear to be decisive for the catalytic process to be effective. Studies of the reaction kinetics show that when oxygen vacancies are present on the ZrO2 surface, carbon monoxide is produced within a microsecond. The IR spectra of CO2 and H2 interacting with ZrO2 and Cu under conditions that correspond to the catalyzed CH3OH production process is also studied experimentally and compared to results from the theoretical computations. Surface structures and gas-phase molecules are identified through the spectral lines by matching them to specific vibrational modes from the literature and from the new computational results. Several surface structures are verified and can be used to pin point surface structures in the reaction path. This gives important information that help decipher how the reaction mechanism of the CO2 conversion and ultimately may aid to improve the methanol synthesis process.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2018. s. 65
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1925
Nationell ämneskategori
Teoretisk kemi Nanoteknik Fysikalisk kemi
Identifikatorer
urn:nbn:se:liu:diva-148757 (URN)10.3384/diss.diva-148757 (DOI)9789176853337 (ISBN)
Disputation
2018-08-30, Planck, Fysikhuset, Campus Valla, Linköping, 10:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2018-06-19 Skapad: 2018-06-19 Senast uppdaterad: 2019-09-30Bibliografiskt granskad

Open Access i DiVA

fulltext(1688 kB)508 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1688 kBChecksumma SHA-512
6929e79fb9ad9c7ef3eaf73852ea0262311dedb8ef707f7c8fea21553070d34f1e2c87d8e0e9d6b84da4a9f22c2eeb5a9e8392ac3c4ce78b76cc8ef0bf85781a
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Personposter BETA

Kalered, EmilPedersen, HenrikJanzén, ErikOjamäe, Lars

Sök vidare i DiVA

Av författaren/redaktören
Kalered, EmilPedersen, HenrikJanzén, ErikOjamäe, Lars
Av organisationen
KemiTekniska högskolanHalvledarmaterial
I samma tidskrift
Theoretical Chemistry accounts
Teknik och teknologier

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 508 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 239 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf