liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Polyphosphonium-Based Ion Bipolar Junction Transistors
Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan. (Laboratory of Organic Electronics)ORCID-id: 0000-0002-0302-226X
Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan. (Laboratory of Organic Electronics)ORCID-id: 0000-0002-9845-446X
Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan. (Laboratory of Organic Electronics)ORCID-id: 0000-0001-5154-0291
2014 (Engelska)Ingår i: Biomicrofluidics, ISSN 1932-1058, E-ISSN 1932-1058, Vol. 8, nr 6, s. 064116-Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Advancements in the field of electronics during the past few decades have inspired the use of transistors in a diversity of research fields, including biology and medicine. However, signals in living organisms are not only carried by electrons, but also through fluxes of ions and biomolecules. Thus, in order to implement the transistor functionality to control biological signals, devices that can modulate currents of ions and biomolecules, i.e. ionic transistors and diodes, are needed. One successful approach for modulation of ionic currents is to use oppositely charged ion-selective membranes to form so called ion bipolar junction transistors (IBJTs). Unfortunately, overall IBJT device performance has been hindered due to the typical low mobility of ions, large geometries of the ion bipolar junction materials, and the possibility of electric field enhanced (EFE) water dissociation in the junction. Here, we introduce a novel polyphosphonium-based anion-selective material into npn-type IBJTs. The new material does not show EFE water dissociation and therefore allows for a reduction of junction length down to 2 μm, which significantly improves the switching performance of the ion transistor to 2 s. The presented improvement in speed as well the simplified design will be useful for future development of advanced iontronic circuits employing IBJTs, for example addressable drug-delivery devices.

Ort, förlag, år, upplaga, sidor
2014. Vol. 8, nr 6, s. 064116-
Nyckelord [en]
WATER DISSOCIATION; NANOFLUIDIC DIODE; MEMBRANES; CIRCUITS
Nationell ämneskategori
Annan elektroteknik och elektronik
Identifikatorer
URN: urn:nbn:se:liu:diva-110400DOI: 10.1063/1.4902909ISI: 000347160400018OAI: oai:DiVA.org:liu-110400DiVA, id: diva2:745410
Anmärkning

This research was financed by VINNOVA (OBOE Miljo and AFM), the Swedish Research Council, and the Onnesjo foundation.

Tillgänglig från: 2014-09-10 Skapad: 2014-09-10 Senast uppdaterad: 2017-12-05Bibliografiskt granskad
Ingår i avhandling
1. Monopolar and Bipolar Membranes in Organic Bioelectronic Devices
Öppna denna publikation i ny flik eller fönster >>Monopolar and Bipolar Membranes in Organic Bioelectronic Devices
2014 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

In the 1970s it was discovered that organic polymers, a class of materials otherwise best know as insulating plastics, could be made electronically conductive. As an alternative to silicon semiconductors, organic polymers offer many novel features, characteristics, and opportunities, such as producing electronics at low costs using printing techniques, using organic chemistry to tune optical and electronic properties, and mechanical flexibility. The conducting organic polymers have been used in a vast array of devices, exemplified by organic transistors, light-emitting diodes, and solar cells. Due to their softness, biocompatibility, and combined electronic and ionic transport, organic electronic materials are also well suited as the active material in bioelectronic applications, a scientific and engineering area in which electronics interface with biology. The coupling of ions and electrons is especially interesting, as ions serve as signal carriers in all living organisms, thus offering a direct translation of electronic and ionic signals. To further enable complex control of ionic fluxes, organic electronic materials can be integrated with various ionic components, such as ion-conducting diodes and transistors.

This thesis reports a background to the field of organic bioelectronic and ionic devices, and also presents the integration of ionic functions into organic bioelectronic devices. First, an electrophoretic drug delivery device is presented, capable of delivering ions at high spatiotemporal resolution. The device, called the organic electronic ion pump, is used to electronically control amyloid-like aggregation kinetics and morphology of peptides, and offers an interesting method for studying amyloids in vitro. Second, various ion-conducting diodes based on bipolar membranes are described. These diodes show high rectification ratio, i.e. conduct ions better for positive than for negative applied voltage. Simple ion diode based circuits, such as an AND gate and a full-wave rectifier, are also reported. The AND gate is intended as an addressable pH pixel to regulate for example amyloid aggregation, while the full-wave rectifier decouples the electrochemical capacity of an electrode from the amount of ionic charge it can generate. Third, an ion transistor, also based on bipolar membranes, is presented. This transistor can amplify and control ionic currents, and is suitable for building complex ionic logic circuits. Together, these results provide a basic toolbox of ionic components that is suitable for building more complex and/or implantable organic bioelectronic devices.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2014. s. 76
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1620
Nyckelord
bioelectronics, ionic, ion transport;bipolar membrane, conjugated polymer, amyloid, self-assembly
Nationell ämneskategori
Annan elektroteknik och elektronik
Identifikatorer
urn:nbn:se:liu:diva-110406 (URN)10.3384/diss.diva-110406 (DOI)978-91-7519-244-4 (ISBN)
Disputation
2014-10-10, K2, Kåkenhus, Campus Norrköping, Linköpings Universitet, Norrköping, 10:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2014-09-10 Skapad: 2014-09-10 Senast uppdaterad: 2017-02-03Bibliografiskt granskad

Open Access i DiVA

fulltext(979 kB)168 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 979 kBChecksumma SHA-512
585160e851cdfbfd28dbcc33cb3f08e92f0fd23fc701a2638fd1d1831b86714527a8d2cbcc191d3b1742e7a5ede93391e8a7d9dd13f9d12c08b3bb1b3c08cc02
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Personposter BETA

Gabrielsson, Erik O.Tybrandt, KlasBerggren, Magnus

Sök vidare i DiVA

Av författaren/redaktören
Gabrielsson, Erik O.Tybrandt, KlasBerggren, Magnus
Av organisationen
Fysik och elektroteknikTekniska högskolan
I samma tidskrift
Biomicrofluidics
Annan elektroteknik och elektronik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 168 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 743 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf