liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Analysis of direct and converse piezoelectric responses from zinc oxide nanowires grown on a conductive fabric
Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.ORCID-id: 0000-0002-9566-041X
Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
Visa övriga samt affilieringar
2015 (Engelska)Ingår i: Physica Status Solidi (a) applications and materials science, ISSN 1862-6300, E-ISSN 1862-6319, Vol. 212, nr 3, s. 579-584Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Single crystalline hexagonal wurtzite zinc oxide nanowires were grown on conductive commercial textile fabric as piezoelectric material. Aqueous chemical growth (ACG) method was used for the synthesis of ZnO nanowires. Field emission surface scanning electron microscopy and X-ray diffraction techniques were used for surface and structural analysis of grown nanowires. The mechanical and piezoelectric properties of the nanowires were investigated by nanoindantation. Piezoelectric potentials up to 0.013 V were measured in response to direct applied loads in the range 0 - 11 mN. Also, a DC voltage was applied for measurement of converse piezoelectric response under a low constant applied force (~5 μN) and the piezoelectric coefficient was found to be 33.2 pm/V. This study performed on commercial conductive textile demonstrates the feasibility to fabricate wearable nanogenerator clothing.

Ort, förlag, år, upplaga, sidor
John Wiley & Sons, 2015. Vol. 212, nr 3, s. 579-584
Nyckelord [en]
zinc oxide nanowires; conductive fabric; aqueous chemical growth; piezoelectricity
Nationell ämneskategori
Fysik
Identifikatorer
URN: urn:nbn:se:liu:diva-110893DOI: 10.1002/pssa.201431625ISI: 000351530800015OAI: oai:DiVA.org:liu-110893DiVA, id: diva2:750061
Anmärkning

On the day of the defence date of the Ph.D. Thesis, the status of this article was Manuscript.

Tillgänglig från: 2014-09-26 Skapad: 2014-09-26 Senast uppdaterad: 2024-01-08Bibliografiskt granskad
Ingår i avhandling
1. Analysis of the piezoelectric and current transport properties of zinc oxide nanostructures grown on fiber
Öppna denna publikation i ny flik eller fönster >>Analysis of the piezoelectric and current transport properties of zinc oxide nanostructures grown on fiber
2014 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

It seems that nowadays the world is becoming as a small village due to the advancement in communication devices technology. These devices are playing an important role in the wellbeing of our life as almost each and every person is utilizing at least one of these devices. These devices consume energy and with our increased use of technology, we are faced  with energy crises. Therefore, the research community is keen in trying to explore alternative resources. One possibility is to search for the alternative resources from our environment. The attempt in this thesis was to utilize the piezoelectric properties by harvesting electrical energy from nanostructures. By utilizing the piezoelectric property of some materials, mechanical energy can be harvested as electrical output. It is worth mention that the ambient mechanical energy is the most available source of energy around us. Hence it is of interest to utilize it to develop future smart devices having the self-powered property. In this connection various experimental and mathematical techniques have been utilized for achieving this target.

In this thesis zinc oxide (ZnO) nanostructures grown on textile substrates were the material. The use of textile as substrate is quite unique property of the presented work. Since textile is an essential and fundamental component of our everyday lives, therefore the use of textile as substrate can pave the way for the fabrication of novel self-powered devices. As in comparison with conventional and expensive substrates textile is very economical, lightweight, highly flexible, recyclable, reproducible, disposable, wearable and washable.

I started my research work by integrating ZnO nanorods based nanogenerator on conductive textile fiber for the analysis of piezoelectric properties of ZnO nanorods. The acceptance of my work among the research community encouraged me to continue with it in order to improve the performance of the fabricated device. It is well known that piezoelectricity is a linear electromechanical coupling of the material in which mechanical energy is converted into electrical energy. Therefore, the piezoelectric properties of ZnO nanorods were investigated with regard to different physical parameters. In the electromechanical phenomena the analysis of the direct and the converse piezoelectric effect is also critical if conductive textile is used as a substrate. Therefore analysis of the direct and the converse piezoelectric effect was performed for ZnO nanowires grown on conductive textile fiber by using the nanoindentation method.

Since the morphology of ZnO nanostructures can have an influence on the piezoelectric properties, the energy harvesting properties of ZnO nanoflowers were investigated and the achieved results confirmed that morphology has a strong influence on the piezoelectric properties. In addition, since there is an interest to generate a direct current (DC) piezoelectricity, a Schottky junction fabricated to one side of the nanogenerator material is needed. Therefore, ZnO nanorods based Schottky diode (Cu/ZnO) on textile fabric was fabricated and investigated. Moreover, frequency dependence electrical characterization was performed for analysis of current-transport properties of another Schottky diode (Au/ZnO) for understanding the carrier flow at the interface of the metal-semiconductor. Nevertheless, the consistency and stability of the constructed devices (ZnO nanogenerators and Schottky diodes) need some additional work to overcome these problems to achieve commercial realization of these devices in the future.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2014. s. 140
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1622
Nyckelord
Aqueous chemical growth method; Zinc Oxide nanostructures; Textile fabric; Mechanical and Piezoelectric properties; Current-transport properties of Schottky diodes
Nationell ämneskategori
Fysik Nanoteknik
Identifikatorer
urn:nbn:se:liu:diva-110894 (URN)978-91-7519-234-5 (ISBN)
Disputation
2014-10-29, K3, Kåkenhus, Campus Norrköping, Linköpings universitet, Norrköping, 10:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2014-09-26 Skapad: 2014-09-26 Senast uppdaterad: 2024-01-08Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Person

Khan, AzamHussain, MushtaqueNur, OmerWillander, MagnusBroitman, Esteban

Sök vidare i DiVA

Av författaren/redaktören
Khan, AzamHussain, MushtaqueNur, OmerWillander, MagnusBroitman, Esteban
Av organisationen
Fysik och elektroteknikTekniska högskolanTunnfilmsfysik
I samma tidskrift
Physica Status Solidi (a) applications and materials science
Fysik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 765 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf