liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Nonlinear Elliptic Equations and Nonassociative Algebras
Aix-Marseille University, France.
Linköpings universitet, Matematiska institutionen, Matematik och tillämpad matematik. Linköpings universitet, Tekniska högskolan.ORCID-id: 0000-0002-8422-6140
Aix-Marseille University, France.
2014 (Engelska)Bok (Refereegranskat)
Abstract [en]

This book presents applications of noncommutative and nonassociative algebras to constructing unusual (nonclassical and singular) solutions to fully nonlinear elliptic partial differential equations of second order. The methods described in the book are used to solve a longstanding problem of the existence of truly weak, nonsmooth viscosity solutions. Moreover, the authors provide an almost complete description of homogeneous solutions to fully nonlinear elliptic equations. It is shown that even in the very restricted setting of "Hessian equations", depending only on the eigenvalues of the Hessian, these equations admit homogeneous solutions of all orders compatible with known regularity for viscosity solutions provided the space dimension is five or larger. To the contrary, in dimension four or less the situation is completely different, and our results suggest strongly that there are no nonclassical homogeneous solutions at all in dimensions three and four.

Thus this book gives a complete list of dimensions where nonclassical homogeneous solutions to fully nonlinear uniformly elliptic equations do exist; this should be compared with the situation of, say, ten years ago when the very existence of nonclassical viscosity solutions was not known.

Ort, förlag, år, upplaga, sidor
Providence, Rhode Island: American Mathematical Society (AMS), 2014, 1. , s. 240
Serie
Mathematical Surveys and Monographs, ISSN 0885-4653, E-ISSN 2331-7159 ; 200
Nyckelord [en]
Weak solutions; elliptic type PDE; minimal cones; nonassociative algebras; viscous solution; Jordan algebras; Hessian equations
Nationell ämneskategori
Matematisk analys
Identifikatorer
URN: urn:nbn:se:liu:diva-111779ISBN: 1-4704-1710-3 (tryckt)ISBN: 9781470417109 (tryckt)OAI: oai:DiVA.org:liu-111779DiVA, id: diva2:759966
Tillgänglig från: 2014-11-01 Skapad: 2014-11-01 Senast uppdaterad: 2018-02-15Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Link to publicationFind book in another country/Hitta boken i ett annat land

Personposter BETA

Tkachev, Vladimir

Sök vidare i DiVA

Av författaren/redaktören
Tkachev, Vladimir
Av organisationen
Matematik och tillämpad matematikTekniska högskolan
Matematisk analys

Sök vidare utanför DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 185 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf