liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Statistical Knowledge Patterns: Identifying Synonymous Relations in Large Linked Datasets
University of Sheffield, UK.
University of Sheffield, UK.
Linköpings universitet, Institutionen för datavetenskap, Interaktiva och kognitiva system. Linköpings universitet, Tekniska högskolan. (MDA)ORCID-id: 0000-0003-0036-6662
University of Sheffield, UK.
Visa övriga samt affilieringar
2013 (Engelska)Ingår i: The Semantic Web – ISWC 2013: 12th International Semantic Web Conference, Sydney, NSW, Australia, October 21-25, 2013, Proceedings, Part I, Springer Berlin/Heidelberg, 2013, Vol. 8218, s. 703-719Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

The Web of Data is a rich common resource with billions of triples available in thousands of datasets and individual Web documents created by both expert and non-expert ontologists. A common problem is the imprecision in the use of vocabularies: annotators can misunderstand the semantics of a class or property or may not be able to find the right objects to annotate with. This decreases the quality of data and may eventually hamper its usability over large scale. This paper describes Statistical Knowledge Patterns (SKP) as a means to address this issue. SKPs encapsulate key information about ontology classes, including synonymous properties in (and across) datasets, and are automatically generated based on statistical data analysis. SKPs can be effectively used to automatically normalise data, and hence increase recall in querying. Both pattern extraction and pattern usage are completely automated. The main benefits of SKPs are that: (1) their structure allows for both accurate query expansion and restriction; (2) they are context dependent, hence they describe the usage and meaning of properties in the context of a particular class; and (3) they can be generated offline, hence the equivalence among relations can be used efficiently at run time.

Ort, förlag, år, upplaga, sidor
Springer Berlin/Heidelberg, 2013. Vol. 8218, s. 703-719
Serie
Lecture Notes in Computer Science, ISSN 0302-9743, E-ISSN 1611-3349 ; 8218
Nyckelord [en]
Knowledge Patterns, Semantic Web
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:liu:diva-112236DOI: 10.1007/978-3-642-41335-3_44ISI: 000340417700044ISBN: 978-3-642-41334-6 (tryckt)ISBN: 978-3-642-41335-3 (tryckt)OAI: oai:DiVA.org:liu-112236DiVA, id: diva2:764406
Konferens
12th International Semantic Web Conference (ISWC 2013), Sydney, NSW, Australia, October 21-25, 2013
Tillgänglig från: 2014-11-19 Skapad: 2014-11-19 Senast uppdaterad: 2019-07-03Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Blomqvist, Eva

Sök vidare i DiVA

Av författaren/redaktören
Blomqvist, Eva
Av organisationen
Interaktiva och kognitiva systemTekniska högskolan
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 40 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf