liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
High throughput fabrication of plasmonic nanostructures in nanofluidic pores for biosensing applications
Department of Applied Physics, Chalmers University of Technology, Fysikgränd 3, SE-41296, Gothenburg, Sweden.
Department of Applied Physics, Chalmers University of Technology, Fysikgränd 3, SE-41296, Gothenburg, Sweden.
Department of Applied Physics, Chalmers University of Technology, Fysikgränd 3, SE-41296, Gothenburg, Sweden.ORCID-id: 0000-0002-3002-3639
2012 (Engelska)Ingår i: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 23, nr 41, artikel-id 415304Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

One of the primary advantages of nanoscale sensors is that they often can provide conceptually new ways of performing sensing that are not feasible with their large-scale analogs. For example, the small size of nanoscale sensor elements, such as plasmonic metal nanoparticles, allows them to be combined with nanofluidic systems. Among the potential applications of such a combination is the efficient delivery of analyte to the sensor surface. With this in mind, in this work we look to address the challenge of creating and positioning nanoplasmonic sensor elements within nanofluidic pores. A scheme is presented that allows for the production of arrays of pores in a thin (220 nm) silicon nitride membrane with one plasmonic nanoparticle sensor element in each pore. The high throughput fabrication protocol is parallel and enables multiple sensor chips to be produced simultaneously, yet with accurate tuning of the dimension and shape of the nanoparticles. The presented system is shown to possess polarization-sensitive plasmonic resonances that can be tuned significantly in the visible wavelength range by just varying one process parameter. The thickness of the membrane could be optimized to minimize the influence of the optical membrane interference on the plasmonic readout. The sensitivity of the plasmon resonances to changes in refractive index, which forms the basis for using the system for biosensing, was found to be competitive with other nanoplasmonic sensors.

Ort, förlag, år, upplaga, sidor
IOP Publishing: Hybrid Open Access , 2012. Vol. 23, nr 41, artikel-id 415304
Nationell ämneskategori
Atom- och molekylfysik och optik
Identifikatorer
URN: urn:nbn:se:liu:diva-118821DOI: 10.1088/0957-4484/23/41/415304ISI: 000309506700007PubMedID: 23018651OAI: oai:DiVA.org:liu-118821DiVA, id: diva2:817149
Anmärkning

Funding Agencies|Nanofabrication Laboratory at MC2, Chalmers University of Technology; Swedish Foundation for Strategic Research (SSF); GE Healthcare Biosciences AB; Wenner-Gren Foundations

Tillgänglig från: 2015-06-04 Skapad: 2015-06-04 Senast uppdaterad: 2017-12-04

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMed

Person

Jonsson, Magnus P.

Sök vidare i DiVA

Av författaren/redaktören
Jonsson, Magnus P.
I samma tidskrift
Nanotechnology
Atom- och molekylfysik och optik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 365 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf