liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An Efficient Full-Wave Electromagnetic Analysis for Capacitive Body-Coupled Communication
Linköpings universitet, Institutionen för systemteknik. Linköpings universitet, Tekniska fakulteten.
Department of Electrical Engineering, Eindhoven University of Technology (TU/e), P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
Linköpings universitet, Institutionen för systemteknik, Elektroniska Kretsar och System. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0002-2144-6795
2015 (Engelska)Ingår i: International Journal of Antennas and Propagation, ISSN 1687-5869, E-ISSN 1687-5877, Vol. 2015, s. 15-, artikel-id 245621Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Measured propagation loss for capacitive body-coupled communication (BCC) channel (1 MHz to 60 MHz) is limitedly available in the literature for distances longer than 50 cm. This is either because of experimental complexity to isolate the earth-ground or design complexity in realizing a reliable communication link to assess the performance limitations of capacitive BCC channel. Therefore, an alternate efficient full-wave electromagnetic (EM) simulation approach is presented to realistically analyze capacitive BCC, that is, the interaction of capacitive coupler, the human body, and the environment all together. The presented simulation approach is first evaluated for numerical/human body variation uncertainties and then validated with measurement results from literature, followed by the analysis of capacitive BCC channel for twenty different scenarios. The simulation results show that the vertical coupler configuration is less susceptible to physiological variations of underlying tissues compared to the horizontal coupler configuration. The propagation loss is less for arm positions when they are not touching the torso region irrespective of the communication distance. The propagation loss has also been explained for complex scenarios formed by the ground-plane and the material structures (metals or dielectrics) with the human body. The estimated propagation loss has been used to investigate the link-budget requirement for designing capacitive BCC system in CMOS sub-micron technologies.

Ort, förlag, år, upplaga, sidor
2015. Vol. 2015, s. 15-, artikel-id 245621
Nyckelord [en]
Efficient Full-Wave Electromagnetic, Efficient Full-Wave EM, Full-Wave EM, Capacitive Body-Coupled Communication, Body-Coupled Communication, Vertical Coupler, Horizontal Coupler, Propagation Loss, Numerical technique, Analytical
Nationell ämneskategori
Kommunikationssystem
Identifikatorer
URN: urn:nbn:se:liu:diva-118883DOI: 10.1155/2015/245621ISI: 000356768000001OAI: oai:DiVA.org:liu-118883DiVA, id: diva2:817217
Projekt
VINNOVA
Forskningsfinansiär
VINNOVATillgänglig från: 2015-06-04 Skapad: 2015-06-04 Senast uppdaterad: 2018-11-08Bibliografiskt granskad
Ingår i avhandling
1. Variation-Aware System Design Simulation Methodology for Capacitive BCC Transceivers
Öppna denna publikation i ny flik eller fönster >>Variation-Aware System Design Simulation Methodology for Capacitive BCC Transceivers
2015 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Capacitive body coupled communication (BCC), frequency range 500 kHz to 15 MHz, is considered an emerging alternate short range wireless technology which can meet the stringent low power consumption (< 1 mW) and low data rate (< 100 kbps) requirements for the next generation of connected devices for applications like internet-of-things (IoT) and wireless sensor network (WSN). But a reliable solution for this mode of communication covering all possible body positions and maximum communication distances around the human body could not be presented so far, despite its inception around 20 years back in 1995. The uncertainties/errors associated with experimental measurement setup create ambiguity about the measured propagation loss or transmission errors. The reason is the usage of either earth grounded lab instruments or the direct coupling of earth ground with transmitter/receiver or the analog front end cut-off frequency limitations in a few MHz region or the balun to provide isolation or the measurements on simplified homogeneous biological phantoms. Another source of ambiguity in the experimental measurements is attributed to the natural variations in human tissue electrophysiological properties from person to person which are also affected by physical factors like age, gender, number of cells at different body locations and humidity. The analytical models presented in the literature are also oversimplified which do not predict the true propagation loss for capacitive BCC channel.

An attempt is being made to understand and demonstrate, qualitatively and quantitatively, the physical phenomenon of signal transmission and propagation characteristics e.g., path loss in complex scenarios for capacitive BCC channel by both the experimental observations/measurements and simulation models in this PhD dissertation. An alternate system design simulation methodology has been proposed which estimates the realistic path loss even for longer communication distances > 50 cm for capacitive BCC channel. The proposed simulation methodology allows to vary human tissue dielectric/thickness properties and easily integrates with the circuit simulators as the output is in the form of S-parameters. The advantage is that the capacitive BCC channel characteristics e.g., signal attenuation as a function of different physical factors could be readily simulated at the circuit level to choose appropriate circuit topology and define suitable system specifications. This simulation methodology is based on full-wave electromagnetic analysis and 3D modeling of human body and environment using their conductivity, permittivity, and tangent loss profile to estimate the realistic propagation loss or path loss due to their combined interaction with the electrode coupler for capacitive BCC channel. This methodology estimates the complex path impedance from transmitter to receiver which is important to determine the matching requirements for maximum power transfer. The simulation methodology also contributes towards better understanding of signal propagation through physical channel under the influence of different electrode coupler configurations. The simulation methodology allows to define error bounds for variations in propagation loss due to both numeric uncertainties (boundary conditions, mesh cells) and human body variation uncertainties (dielectric properties, dielectric thicknesses) for varying communication distances and coupler configuration/sizes.

Besides proposing the simulation methodology, the digital baseband and passband communication architectures using discrete electronics components have been experimentally demonstrated in the context of IoT application through capacitive BCC channel for data rates between 1 kbps to 100 kbps under isolated earth ground conditions. The experimental results/observations are supported by the simulation results for different scenarios of capacitive BCC channel.

The experimental and simulation results help in defining suitable system specifications for monolithic integrated circuit design of analog front end (AFE) blocks for capacitive BCC transmitter/receiver in deep submicron CMOS technologies.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2015. s. 78
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1721
Nationell ämneskategori
Elektroteknik och elektronik Datavetenskap (datalogi)
Identifikatorer
urn:nbn:se:liu:diva-122840 (URN)10.3384/diss.diva-122840 (DOI)978-91-7685-906-3 (ISBN)
Disputation
2015-12-18, Visionen, Hus B, Campus Valla, Linköping, 13:15 (Engelska)
Opponent
Handledare
Anmärkning

The series name Linköping Studies in Science and Technology. Thesis in the printed version is incorrect. The correct name is Linköping Studies in Science and Technology. Dissertations. This is corrected in the electronic version.

In the electronic published version minor errors in the acknowledgements and some typographical mistakes has been corrected.

Tillgänglig från: 2015-11-26 Skapad: 2015-11-26 Senast uppdaterad: 2019-11-15Bibliografiskt granskad

Open Access i DiVA

fulltext(2978 kB)816 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 2978 kBChecksumma SHA-512
db1559ab0c4cebd58e0307fe74734c515f2e1aebce6f4dafedcea9d8f0d3d26c5bfd6edc35a45521cb49d15c9ddf873c7b5f2010002e9c23303c98c9dffe18ce
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Person

Kazim, Muhammad IrfanWikner, J. Jacob

Sök vidare i DiVA

Av författaren/redaktören
Kazim, Muhammad IrfanWikner, J. Jacob
Av organisationen
Institutionen för systemteknikTekniska fakultetenElektroniska Kretsar och System
I samma tidskrift
International Journal of Antennas and Propagation
Kommunikationssystem

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 816 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 416 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf