liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Compressive Image Reconstruction in Reduced Union of Subspaces
Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten. (Computer Graphics and Image Processing)
Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten. (Computer Graphics and Image Processing)
Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten. (Computer Graphics and Image Processing)ORCID-id: 0000-0002-7765-1747
2015 (Engelska)Ingår i: Computer Graphics Forum, ISSN 1467-8659, Vol. 34, nr 2, s. 33-44Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We present a new compressed sensing framework for reconstruction of incomplete and possibly noisy images and their higher dimensional variants, e.g. animations and light-fields. The algorithm relies on a learning-based basis representation. We train an ensemble of intrinsically two-dimensional (2D) dictionaries that operate locally on a set of 2D patches extracted from the input data. We show that one can convert the problem of 2D sparse signal recovery to an equivalent 1D form, enabling us to utilize a large family of sparse solvers. The proposed framework represents the input signals in a reduced union of subspaces model, while allowing sparsity in each subspace. Such a model leads to a much more sparse representation than widely used methods such as K-SVD. To evaluate our method, we apply it to three different scenarios where the signal dimensionality varies from 2D (images) to 3D (animations) and 4D (light-fields). We show that our method outperforms state-of-the-art algorithms in computer graphics and image processing literature.

Ort, förlag, år, upplaga, sidor
John Wiley & Sons Ltd , 2015. Vol. 34, nr 2, s. 33-44
Nyckelord [en]
Image reconstruction, compressed sensing, light field imaging
Nationell ämneskategori
Signalbehandling
Identifikatorer
URN: urn:nbn:se:liu:diva-119639DOI: 10.1111/cgf.12539ISI: 000358326600008OAI: oai:DiVA.org:liu-119639DiVA, id: diva2:825377
Konferens
Eurographics 2015
Projekt
VPS
Forskningsfinansiär
Stiftelsen för strategisk forskning (SSF), IIS11-0081Tillgänglig från: 2015-06-23 Skapad: 2015-06-23 Senast uppdaterad: 2018-11-23Bibliografiskt granskad
Ingår i avhandling
1. Sparse representation of visual data for compression and compressed sensing
Öppna denna publikation i ny flik eller fönster >>Sparse representation of visual data for compression and compressed sensing
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The ongoing advances in computational photography have introduced a range of new imaging techniques for capturing multidimensional visual data such as light fields, BRDFs, BTFs, and more. A key challenge inherent to such imaging techniques is the large amount of high dimensional visual data that is produced, often requiring GBs, or even TBs, of storage. Moreover, the utilization of these datasets in real time applications poses many difficulties due to the large memory footprint. Furthermore, the acquisition of large-scale visual data is very challenging and expensive in most cases. This thesis makes several contributions with regards to acquisition, compression, and real time rendering of high dimensional visual data in computer graphics and imaging applications.

Contributions of this thesis reside on the strong foundation of sparse representations. Numerous applications are presented that utilize sparse representations for compression and compressed sensing of visual data. Specifically, we present a single sensor light field camera design, a compressive rendering method, a real time precomputed photorealistic rendering technique, light field (video) compression and real time rendering, compressive BRDF capture, and more. Another key contribution of this thesis is a general framework for compression and compressed sensing of visual data, regardless of the dimensionality. As a result, any type of discrete visual data with arbitrary dimensionality can be captured, compressed, and rendered in real time.

This thesis makes two theoretical contributions. In particular, uniqueness conditions for recovering a sparse signal under an ensemble of multidimensional dictionaries is presented. The theoretical results discussed here are useful for designing efficient capturing devices for multidimensional visual data. Moreover, we derive the probability of successful recovery of a noisy sparse signal using OMP, one of the most widely used algorithms for solving compressed sensing problems.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2018. s. 158
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1963
Nationell ämneskategori
Mediateknik
Identifikatorer
urn:nbn:se:liu:diva-152863 (URN)10.3384/diss.diva-152863 (DOI)9789176851869 (ISBN)
Disputation
2018-12-14, Domteatern, Visualiseringscenter C, Kungsgatan 54, Campus Norrköping, Norrköping, 09:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2018-11-23 Skapad: 2018-11-23 Senast uppdaterad: 2018-11-23Bibliografiskt granskad

Open Access i DiVA

fulltext(39942 kB)32 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 39942 kBChecksumma SHA-512
41919e41b35c02ef1aaef17b0d2139c647ae44db02cb56aa6fc44073367672fad2f6e17781627dac8ecc13bcea632e3a3274b5e20f2781ad8abd096fef5dc496
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextProject web page

Personposter BETA

Miandji, EhsanKronander, JoelUnger, Jonas

Sök vidare i DiVA

Av författaren/redaktören
Miandji, EhsanKronander, JoelUnger, Jonas
Av organisationen
Medie- och InformationsteknikTekniska fakulteten
Signalbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 32 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 400 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf