liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
In-grown stacking-faults in 4H-SiC epilayers grown on 2 degrees off-cut substrates
Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
2015 (Engelska)Ingår i: Physica status solidi. B, Basic research, ISSN 0370-1972, E-ISSN 1521-3951, Vol. 252, nr 6, s. 1319-1324Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

4H-SiC epilayers were grown on 2 degrees off-cut substrates using standard silane/propane chemistry, with the aim of characterizing in-grown stacking faults. The stacking faults were analyzed with low temperature photoluminescence spectroscopy, room temperature photoluminescence mappings, room temperature cathodoluminescence and synchrotron white beam X-ray topography. At least three different types of in-grown stacking faults were observed, including double Shockley stacking faults, triple Shockley stacking faults and bar-shaped stacking faults. Those stacking faults are all previously found in 4 degrees and 8 degrees off-cut epilayers; however, the geometrical size is larger in epilayers grown on 2 degrees off-cut substrates due to lower off-cut angle. The stacking faults were formed close to the epilayer/substrate interface during the epitaxial growth. (C) 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim

Ort, förlag, år, upplaga, sidor
WILEY-V C H VERLAG GMBH , 2015. Vol. 252, nr 6, s. 1319-1324
Nyckelord [en]
chemical vapor deposition; epitaxy; photoluminescence; SiC; stacking faults
Nationell ämneskategori
Kemi
Identifikatorer
URN: urn:nbn:se:liu:diva-120065DOI: 10.1002/pssb.201451710ISI: 000355756200018OAI: oai:DiVA.org:liu-120065DiVA, id: diva2:839945
Anmärkning

Funding Agencies|Swedish Research Council (VR); Advanced Functional Materials (AFM); Swedish Foundation for Strategic Research (SSF)

Tillgänglig från: 2015-07-06 Skapad: 2015-07-06 Senast uppdaterad: 2018-12-10
Ingår i avhandling
1. 4H-SiC epitaxy investigating carrier lifetime and substrate off-axis dependence
Öppna denna publikation i ny flik eller fönster >>4H-SiC epitaxy investigating carrier lifetime and substrate off-axis dependence
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Silicon carbide (SiC) is a wide bandgap semiconductor with unique material properties making it useful for various device applications using high power, high frequency and high temperature. Compared to Si-based electronics, SiC based electronics have an improved energy efficiency. One of the most critical problems is to reduce this planets power consumption, where large improvements can be made enhancing the energy efficiency. Independent on how the electrical power is generated, power conversion is needed and about 10% of the electrical power is lost for every power conversion step using Si-based electronics. Since the efficiency is related to the performance of the semiconductor device, SiC can make contributions to the efficiency. Compared to Si, SiC has three times larger bandgap, about ten times higher breakdown electric field strength and about three times higher thermal conductivity. The wide bandgap together with the chemical stability of SiC makes it possible for SiC electronic devices to operate at much higher temperatures (>250°C) compared to Si-based devices and do not require large cooling units as with Si power converters.

The current status for 4H-SiC devices regard unipolar devices (≤ 1700 V), such as metal-oxide-semiconductor field-effect transistors (MOSFETs) and Schottky barrier diodes (SBDs), are now on the market for mass production. The research focus is now on high-voltage (>10 kV) bipolar devices, such as, bipolar junction transistors (BJTs), p‑i‑n diodes and insulated-gate bipolar transistors (IGBTs).

The focus of this thesis are material improvements relevant for the development of 4H-SiC high-voltage bipolar devices. A key parameter for such devices is the minority carrier lifetime, where long carrier lifetimes reduce the on-resistance through conductivity modulation. However, too long carrier lifetimes give long reverse recovery times leading to large switching losses. Thus, a tailored carrier lifetime is needed for the specific application. Carrier lifetimes of the epilayers can both be controlled by the CVD growth conditions and by post-growth processing, such as thermal oxidation and carbon implantation followed by thermal annealing. Emphasis in this thesis (Paper 1‑2) is to find optimal CVD growth conditions (growth temperature, C/Si ratio, growth rate, doping) improving the carrier lifetime. Since the main lifetime limiting defect has shown to be the Z1/2 center, identified as isolated carbon vacancies, growth conditions minimizing the Z1/2 concentration are strived for.

To achieve high-voltage bipolar devices, thick epilayers of high quality is needed. An important factor is then the growth rate that needs to be relatively high in order to reduce the fabrication time, and thus the cost of the final device. In this thesis the growth process has been optimized for high growth rates (30 µm/h) using standard silane and propane chemistry (Paper 3), compared to other chemistries that includes chlorine, which results in corroded reactor parts and new defects in the epitaxial layers.

Another important parameter for 4H-SiC bipolar devices is the basal plane dislocations (BPDs) in the substrate and epilayers, since the BPDs can act as source of nucleation and expansion of Shockley stacking faults (SSFs). The expanded SSFs give a lowered carrier lifetime and form a potential barrier for carrier transport leading to an increased forward voltage drop which in turn leads to bipolar degradation. The bipolar degradation is detrimental for 4H-SiC bipolar devices. Several strategies are developed to reduce the density of BPDs including buffer layers, growth interrupts and decreasing the substrates off-cut angle. Paper 4‑6 is focused on developing a CVD growth process for low substrate off-cut angles (1° and 2°) compared to the today’s standard off-cut angle of 4°. By reducing the substrate off-cut angle the number of BPDs intersecting the substrate surface is reduced. In addition, the conversion from BPDs to threading edge dislocations (TEDs) during epitaxial growth is increased with lower off-cut angles.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2018. s. 63
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1960
Nationell ämneskategori
Materialteknik
Identifikatorer
urn:nbn:se:liu:diva-152500 (URN)10.3384/diss.diva-152500 (DOI)9789176851937 (ISBN)
Disputation
2018-12-18, Planck, Fysikhuset, Campus Valla, Linköping, 10:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2018-12-10 Skapad: 2018-11-05 Senast uppdaterad: 2018-12-10Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Lilja, LouiseUl-Hassan, JawadJanzén, ErikBergman, Peder

Sök vidare i DiVA

Av författaren/redaktören
Lilja, LouiseUl-Hassan, JawadJanzén, ErikBergman, Peder
Av organisationen
HalvledarmaterialTekniska fakulteten
I samma tidskrift
Physica status solidi. B, Basic research
Kemi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 96 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf