liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Ontology-Based Introspection in Support of Stream Reasoning
Linköpings universitet, Institutionen för datavetenskap, Artificiell intelligens och integrerad datorsystem. Linköpings universitet, Tekniska fakulteten. (KPLAB - Knowledge Processing Lab)
Linköpings universitet, Institutionen för datavetenskap, Artificiell intelligens och integrerad datorsystem. Linköpings universitet, Tekniska fakulteten. (KPLAB - Knowledge Processing Lab)
2015 (Engelska)Ingår i: Thirteenth scandinavian conference on artificial intelligence (SCAI) / [ed] S. Nowaczyk, IOS Press, 2015, s. 78-87Konferensbidrag, Publicerat paper (Övrigt vetenskapligt)
Abstract [en]

Building complex systems such as autonomous robots usually require the integration of a wide variety of components including high-level reasoning functionalities. One important challenge is integrating the information in a system by setting up the data flow between the components. This paper extends our earlier work on semantic matching with support for adaptive on-demand semantic information integration based on ontology-based introspection. We take two important standpoints. First, we consider streams of information, to handle the fact that information often becomes continually and incrementally available. Second, we explicitly represent the semantics of the components and the information that can be provided by them in an ontology. Based on the ontology our custom-made stream configuration planner automatically sets up the stream processing needed to generate the streams of information requested. Furthermore, subscribers are notified when properties of a stream changes, which allows them to adapt accordingly. Since the ontology represents both the systems information about the world and its internal stream processing many other powerful forms of introspection are also made possible. The proposed semantic matching functionality is part of the DyKnow stream reasoning framework and has been integrated in the Robot Operating System (ROS).

Ort, förlag, år, upplaga, sidor
IOS Press, 2015. s. 78-87
Nyckelord [en]
ontology, introspection, semantic matching, stream reasoning
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:liu:diva-121119ISBN: 9781614995883 (tryckt)ISBN: 9781614995890 (tryckt)OAI: oai:DiVA.org:liu-121119DiVA, id: diva2:852062
Konferens
Thirteenth Scandinavian Conference on Artificial Intelligence (SCAI), Halmstad, Sweden, 5-6 November 2015
Projekt
CUGSNFFP6CUASCADICSELLIITCENIITTillgänglig från: 2015-09-07 Skapad: 2015-09-07 Senast uppdaterad: 2018-01-11Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Link to publication

Personposter BETA

de Leng, DanielHeintz, Fredrik

Sök vidare i DiVA

Av författaren/redaktören
de Leng, DanielHeintz, Fredrik
Av organisationen
Artificiell intelligens och integrerad datorsystemTekniska fakulteten
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 291 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf