liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A proposal for combining mapping, localization and target recognition
Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten. FOI. (Reglerteknik)ORCID-id: 0000-0002-4434-8055
Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten. (Reglerteknik)ORCID-id: 0000-0002-1971-4295
Cybercom Sweden AB (Sweden).
2015 (Engelska)Ingår i: ELECTRO-OPTICAL REMOTE SENSING, PHOTONIC TECHNOLOGIES, AND APPLICATIONS IX / [ed] Gary Kamerman; Ove Steinvall; Keith L. Lewis; John D. Gonglewski, SPIE - International Society for Optical Engineering, 2015, Vol. 9649Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Simultaneous localization and mapping (SLAM) is a well-known positioning approach in GPS-denied environments such as urban canyons and inside buildings. Autonomous/aided target detection and recognition (ATR) is commonly used in military application to detect threats and targets in outdoor environments. This papers present approaches to combine SLAM with ATR in ways that compensate for the drawbacks in each method. The methods use physical objects that are recognizable by ATR as unambiguous features in SLAM, while SLAM provides the ATR with better position estimates. Landmarks in the form of 3D point features based on normal aligned radial features (NARF) are used in conjunction with identified objects and 3D object models that replace landmarks when possible. This leads to a more compact map representation with fewer landmarks, which partly compensates for the introduced cost of the ATR. We analyze three approaches to combine SLAM and 3D-data; point-point matching ignoring NARF features, point-point matching using the set of points that are selected by NARF feature analysis, and matching of NARF features using nearest neighbor analysis. The first two approaches are is similar to the common iterative closest point (ICP). We propose an algorithm that combines EKF-SLAM and ATR based on rectangle estimation. The intended application is to improve the positioning of a first responder moving through an indoor environment, where the map offers localization and simultaneously helps locate people, furniture and potentially dangerous objects such as gas canisters.

Ort, förlag, år, upplaga, sidor
SPIE - International Society for Optical Engineering, 2015. Vol. 9649
Serie
Proceedings of SPIE, ISSN 0277-786X ; 9649
Nationell ämneskategori
Reglerteknik
Identifikatorer
URN: urn:nbn:se:liu:diva-123215DOI: 10.1117/12.2192200ISI: 000367451000013ISBN: 978-1-62841-859-0 (tryckt)OAI: oai:DiVA.org:liu-123215DiVA, id: diva2:877681
Konferens
Electro-Optical Remote Sensing, Photonic Technologies, and Applications IX France | September 21, 2015
Projekt
Security Link
Forskningsfinansiär
Security Link, 1959Tillgänglig från: 2015-12-07 Skapad: 2015-12-07 Senast uppdaterad: 2016-02-01Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Grönwall, ChristinaHendeby, Gustaf

Sök vidare i DiVA

Av författaren/redaktören
Grönwall, ChristinaHendeby, Gustaf
Av organisationen
ReglerteknikTekniska fakulteten
Reglerteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 808 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf