liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Comparing the Performance of NoSQL Approaches for Managing Archetype-Based Electronic Health Record Data
Linköpings universitet, Institutionen för medicinsk teknik. Linköpings universitet, Tekniska fakulteten. Departamento de Tecnologia da Informação e Educação em Saúde, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
Departamento de Tecnologia da Informação e Educação em Saúde, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil .
Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för medicinsk teknik, Medicinsk informatik. Linköpings universitet, Tekniska fakulteten. Region Östergötland.
Visa övriga samt affilieringar
2016 (Engelska)Ingår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 11, nr 3, artikel-id e0150069Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This study provides an experimental performance evaluation on population-based queries of NoSQL databases storing archetype-based Electronic Health Record (EHR) data. There are few published studies regarding the performance of persistence mechanisms for systems that use multilevel modelling approaches, especially when the focus is on population-based queries. A healthcare dataset with 4.2 million records stored in a relational database (MySQL) was used to generate XML and JSON documents based on the openEHR reference model. Six datasets with different sizes were created from these documents and imported into three single machine XML databases (BaseX, eXistdb and Berkeley DB XML) and into a distributed NoSQL database system based on the MapReduce approach, Couchbase, deployed in different cluster configurations of 1, 2, 4, 8 and 12 machines. Population-based queries were submitted to those databases and to the original relational database. Database size and query response times are presented. The XML databases were considerably slower and required much more space than Couchbase. Overall, Couchbase had better response times than MySQL, especially for larger datasets. However, Couchbase requires indexing for each differently formulated query and the indexing time increases with the size of the datasets. The performances of the clusters with 2, 4, 8 and 12 nodes were not better than the single node cluster in relation to the query response time, but the indexing time was reduced proportionally to the number of nodes. The tested XML databases had acceptable performance for openEHR-based data in some querying use cases and small datasets, but were generally much slower than Couchbase. Couchbase also outperformed the response times of the relational database, but required more disk space and had a much longer indexing time. Systems like Couchbase are thus interesting research targets for scalable storage and querying of archetype-based EHR data when population-based use cases are of interest.

Ort, förlag, år, upplaga, sidor
Public Library Science , 2016. Vol. 11, nr 3, artikel-id e0150069
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:liu:diva-125961DOI: 10.1371/journal.pone.0150069ISI: 000371992300032PubMedID: 26958859OAI: oai:DiVA.org:liu-125961DiVA, id: diva2:910694
Forskningsfinansiär
Swedish e‐Science Research Center
Anmärkning

Funding agencies: Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES Foundation - Brazil) [4055/11]; Conselho Brasileiro de Desenvolvimento Cientifico e Tecnologico (CNPq) [150916/2013-2]

Tillgänglig från: 2016-03-09 Skapad: 2016-03-09 Senast uppdaterad: 2018-03-22

Open Access i DiVA

fulltext(1665 kB)274 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1665 kBChecksumma SHA-512
11068360a0a1490cb35cf3f684b8b745b85e8355ba46990621b3de8887ad0a47293c2b3c6d9d6a8a7d2a09915f596d461233f7af281120bfcf1b622146014095
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMed

Personposter BETA

Wei-Kleiner, FangSundvall, ErikKarlsson, DanielLambrix, Patrick

Sök vidare i DiVA

Av författaren/redaktören
Wei-Kleiner, FangSundvall, ErikKarlsson, DanielLambrix, Patrick
Av organisationen
Institutionen för medicinsk teknikTekniska fakultetenDatabas och informationsteknikTekniska högskolanMedicinsk informatikRegion Östergötland
I samma tidskrift
PLoS ONE
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 274 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 667 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf